CavMat: Materials in Cavities

CavMat: Materials in Cavities

Our newest experiment is CavMat:  Materials in Cavities.  The project merges our confocal cavity QED technique with that of the SQCRAMscope, a novel quantum sensor we invented; see below for brief description.  We aim to influence, in continuous rather than pulsed manner, the collective excitations of a correlated material. A grand goal is to enhance the critical temperature for superconductivity through the photon-material interaction.

The SQCRAMscope (Scanning Quantum Cryogenic Atom Microscope) uses an ultracold quantum gas as a micron-resolution magnetometer. It is capable of imaging DC electron transport and magnetization in both room-temperature and cryogenically cooled quantum materials with unprecedented sensitivity. This novel microscope was the first example of the direct marriage of ultracold AMO physics with condensed matter physics for the exploration of technologically relevant strongly correlated and topologically nontrivial materials. For example, we used the SQCRAMscope to locally image the electron nematic domains that arise in an iron-pnictide high-Tc superconductor. 


"Ultracold atoms put high-temperature superconductors under the microscope" appears in Physics…
New and improved SQCRAMscope can cool samples to 6 K. article on our recent work with the SQCRAMscope: "Imaging nematic transitions in iron…
News & Views in Nature Physics on imaging iron superconductors using SQCRAMscope.  
First science from SQCRAMscope!  We have imaged the electron nematic transport in iron-based…
Dr. Steve Edkins won Institute of Physics prize for best PhD thesis in the field of…
PNAS Journal Club article on the SQCRAMscope.  pdf
Physics Viewpoint on SQCRAMscope
Check-out recent news! 
Introducing the SQCRAMscope.  ArXiv paper describes new microscope functionality.
Matt Naides just defended his Ph.D. thesis! Way to go Dr. Naides!
Paper on the reconfigurable atom chip trapping of atoms near cryogenic materials published in Appl…
Lev publishes proposal for atom chip microscopy of transport in topological insulators Phys. Rev. B…


A. N. Bourzutschky, B. L. Lev, and J. Keeling
Raman-phonon-polariton condensation in a transversely pumped cavity
arXiv:2405.05257  pdf

S. F. Taylor, F. Yang, B. A. Freudenstein, and B. L. Lev
A scanning quantum cryogenic atom microscope at 6 K
SciPost Physics 10, 060 (2021).  pdf 

F. Yang, S. F. Taylor, S. D. Edkins, J. Palmstrom, Ian R. Fisher, and Benjamin L. Lev
Nematic Transitions in Iron-Pnictide Superconductors Imaged with a Quantum Gas
Nature Physics 16, 514 (2020). pdf
Featured in News & Views in Nature Physcis 16, 506 by James Analytis: "Cooking with quantum gas"  pdf
Featured in in article by Ingrid Fadelli: "Imaging nematic transitions in iron pnictide superconductors" pdf
Featured in Physics World article by Margaret Harris: "Ultracold atoms put high-temperature superconductors under the microscope" pdf
arXiv:1907.12601  pdf

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev
A Scanning Quantum Cryogenic Atom Microscope
Physical Review Applied 7, 034026 (2017).  pdf
Selected for a Viewpoint in APS Physics:
J. Fortágh and A. Günther, Sensing Magnetic Fields with a Giant Quantum Wave, pdf

M. A. Naides, R. W. Turner, R. A. Lai, J. M. DiSciacca, and B. L. Lev
Trapping ultracold gases near cryogenic materials with rapid reconfigurability
Applied Physics Letters 103, 251112 (2013)pdf

B. Dellabetta, T. L. Hughes, M. J. Gilbert, and B. L. Lev
Imaging topologically protected transport with quantum degenerate gases
Physical Review B 85, 205442 (2012). pdf