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We review our experiments on quantum information processing with neutral atoms in optical
lattices and magnetic microtraps.

Atoms in an optical lattice in the Mott insulator regime serve as a large qubit register. A spin-
dependent lattice is used to split and delocalize the atomic wave functions in a controlled and
coherent way over a defined number of lattice sites. This is used to experimentally demonstrate a
massively parallel quantum gate array, which allows the creation of a highly entangled many-body
cluster state through coherent collisions between atoms on neighbouring lattice sites.

In magnetic microtraps on an atom chip, we demonstrate coherent manipulation of atomic qubit
states and measure coherence lifetimes exceeding one second at micron-distance from the chip sur-
face. We show that microwave near-fields on the chip can be used to create state-dependent poten-
tials for the implementation of a quantum controlled phase gate with these robust qubit states. For
single atom detection and preparation, we have developed high finesse fiber Fabry-Perot cavities
and integrated them on the atom chip. We present an experiment in which we detected a very small
number of cold atoms magnetically trapped in the cavity using the atom chip.
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INTRODUCTION

Neutral atoms present two essential advantages for quantum information processing (QIP). They are relatively
weakly coupled to the environment, so that decoherence can be controlled better than in most other systems. Further-
more, complete control of all quantum-mechanical degrees of freedom is already a reality, and is used in experiments
with great success, most notably in Bose-Einstein condensation.
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Theoretical approaches have been developed to use atoms in well-defined states of controllable potentials for creating
many-particle entanglement, and qubit operations in particular. Experimentally realizing these proposals is a major
challenge and requires new ideas to overcome the subtle problems occuring in real atomic systems. Requirements on
stability and control of environmental conditions, such as electric and magnetic stray fields, are equally demanding.

In the theoretical investigations already, two experimental systems emerged as particularly promising embodiments
for neutral-atom QIP. Optical lattices allow for a large number of qubits due to their three-dimensional, periodic
structure. In magnetic microtraps (atom chips), complex potentials can be realized, and lithographic fabrication
techniques enable scalability and modularity in analogy with microelectronics. In the following, we review experimental
progress achieved in our group with both systems.

OPTICAL LATTICES

Preparation of a qubit register

Starting point for the preparation of the neutral atom qubit register is an atomic Bose-Einstein condensate. This is
placed in an artificial crystal of light - a so called optical lattice - which is formed by standing wave laser fields along
all three space dimensions. By continuously increasing the lattice depth of the optical potentials, one can drive the
system through a quantum phase transition from a superfluid to a Mott insulator [1, 2], where a defined number of
atoms is placed on each lattice site (see Fig.1). By controlling the initial total number of atoms and the confinement
parameters of the lattice trap, it is possible to have a large connected region to be populated by single atoms on each
lattice site. On each of these sites, the atoms occupy the ground state of the trapping potential and their internal
state is initialized to a defined state as well.

FIG. 1: (a) In the superfluid state of a Bose-Einstein condensate, the underlying atoms can be described as a giant macroscopic
matter wave. When such a condensate is released from the periodic potential a multiple matter wave interference pattern is
formed due to the phase coherence between the atomic wavefunctions on different lattice sites. In this case the phase of the
macroscopic matter wave is well defined. However, the number of atoms at each lattice site fluctuates. (b) In the limit of a
Mott insulating state, each lattice site is filled with a fixed number of atoms but the phase of the matter wave field remains
uncertain. As a result, no matter wave interference pattern can be seen when the quantum gases are released from the lattice
potential.
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FIG. 2: (a) Schematic experimental setup. A one dimensional optical standing wave laser field is formed by two counterprop-
agating laser beams with linear polarizations. The polarization angle of the returning laser beam can be adjusted through an
electro-optical modulator. The dashed lines indicate the principal axes of the wave plate and the EOM. (b) By increasing the
polarization angle θ, one can shift the two resulting σ+ (blue) and σ− (red) polarized standing waves relative to each other.

A quantum conveyer belt for neutral atoms

So far the optical potentials used for optical lattices with Bose-Einstein condensates have been mostly independent
of the internal ground state of the atom. However, it has been suggested that by using spin-dependent periodic
potentials one could bring atoms on different lattice sites into contact and thereby realize fundamental quantum gates
[3, 4, 5, 6], create large scale entanglement [7, 8], excite spin waves [9], study quantum random walks [10] or form a
universal quantum simulator to simulate fundamental complex condensed matter physics hamiltonians [11]. Here we
show how the wave packet of an atom that is initially localized to a single lattice site can be split and delocalized in
a controlled and coherent way over a defined number of lattice sites.

In order to realize a spin dependent transport for neutral atoms in optical lattices, a standing wave configuration
formed by two counterpropagating laser beams with linear polarization vectors enclosing an angle θ has been proposed
[3, 7]. Such a standing wave light field can be decomposed into a superposition of a σ+ and σ− polarized standing
wave laser field, giving rise to lattice potentials V+(x, θ) = V0 cos2(kx + θ/2) and V−(x, θ) = V0 cos2(kx − θ/2). By
changing the polarization angle θ, one can control the separation between the two potentials ∆x = θ/180◦ · λx/2 (see
Fig. 2b). When increasing θ, both potentials shift in opposite directions and overlap again when θ = n · 180◦, with n
being an integer. For a spin-dependent transfer, two internal spin states of the atom should be used, where one spin
state dominantly experiences the V+(x, θ) dipole potential and the other spin state mainly experiences the V−(x, θ)
potential. Such a situation can be realized in rubidium by tuning the wavelength of the optical lattice laser to a value
of λx = 785nm between the fine structure splitting of the rubidium D1 and D2 transition. If an atom is now first
placed in a coherent superposition of both internal states 1/

√
2(|0〉+ i|1〉) and the polarization angle θ is continuously

increased, the spatial wave packet of the atom is split with both components moving in opposite directions.
With such a quantum conveyer belt, atoms have been moved over a defined number of lattice sites. In the experiment

a coherent transport of the atoms over a distance of up to 7 lattice sites has been demostrated [12] (see Fig. 3).

Controlled collisions

In order to realize a controlled interaction between the particles on different lattice sites in a 3D Mott insulating
quantum register, the above spin dependent transport sequence can be used. This leads to collisions between neigh-
bouring atoms and can be described through an ensemble of quantum gates acting in parallel [4, 7]. Alternatively,
these quantum gates can be described as a controllable quantum Ising interaction [8]:

Hint ∝ g(t)
∑

j

1 + σ
(j)
z

2

1 − σ
(j+1)
z

2
(1)

Here g(t) denotes the time dependent coupling constant and σ
(j)
z is the Pauli spin operator acting on an atom at the

jth lattice site. For an interaction phase of ϕ = 2π ×
∫ thold

0
g(t) dt/h = (2n + 1)π one obtains a maximally entangled

cluster state, whereas for ϕ = 2nπ one obtains a disentangled state [8]. Here thold denotes the time for which the
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(i) (ii)

FIG. 3: (i) Schematic sequence used for the quantum conveyer belt. A single atom on lattice site j can be transported over an
arbitrary number of lattice sites depending on its spin state (marked as blue and red curves). (ii) This has allowed us to split
the wave function of the atom in a coherent way, such that a single atom simultaneously moves to the left and to the right.
The coherence of the split wave-packets has been demonstrated in an interference experiment. For larger distances between
the split wave-functions, the period of the interference pattern decreases.

atoms are held together at a common site, h is Planck’s constant and n is an integer. Let us point out that the
creation of such highly entangled states can be achieved in a single lattice shift operational sequence described above
and depicted in Fig. 4, independent of the number of atoms to be entangled [7, 8].

A π/2 pulse allows us to place the atom in a coherent superposition of the two states |0〉 ≡ |F = 1, mF = −1〉 and
|1〉 ≡ |F = 2, mF = −2〉 within a time of 6µs. After creating such a coherent superposition, we use a spin-dependent
transfer to split and move the spatial wave function of the atom over half a lattice spacing in two opposite directions
depending on its internal state (see Fig. 4). Atoms on neighbouring sites interact for a variable amount of time thold

that leads to a controlled conditional phase shift of the corresponding many body state. After half of the hold time, a
microwave π pulse is furthermore applied. This spin-echo type pulse is mainly used to cancel unwanted single particle
phase shifts e.g. due to inhomogeneities in the trapping potentials. It does not, however, affect the non-trivial and
crucial collisional phase shift due to the interactions between the atoms. After such a controlled collision, the atoms
are moved back to their original site. Then a final π/2 microwave pulse with variable phase is applied and the atom
number in state |1〉 relative to the total atom number is recorded [13].

For short hold times, where no significant collisional phase shift is acquired, a Ramsey fringe with a high visibility
of approx. 50% is recorded (see Fig. 5). For longer hold times, we notice a strong reduction in the visibility of the
Ramsey fringe, with an almost vanishing visibility of approx. 5% for a hold time of 210µs. This hold time corresponds
to an acquired collisional phase shift of ϕ = π for which we expect a minimum visibility if the system is becoming
entangled. For a two-particle system this can be understood by observing the resulting Bell state:

1/
√

2
(

|0〉j |+〉αj+1 + |1〉j |−〉αj+1

)

, (2)

after the final π/2 pulse of the Ramsey sequence has been applied to the atoms. Here |+〉αj+1 and |−〉αj+1 represent

two orthogonal superposition states of |0〉 and |1〉 for which |〈1|+〉α|2 + |〈1|−〉α|2 = 0.5. A measurement of atoms
in state |1〉 therefore becomes independent of the phase corresponding to a vanishing Ramsey fringe. This indicates
that no single particle operation can place all atoms in either spin-state when a maximally entangled state has been
created. The disappearance of the Ramsey fringe has been shown to occur not only for a two-particle system, but is a
general feature for an arbitrary N -particle array of atoms that have been highly entangled with the above experimental
sequence [4]. For longer hold times however, the visibility of the Ramsey fringe increases again reaching a maximum of
55% for a hold time of 450µs (see Fig. 5). Here the system becomes disentangled again, as the collisional phase shift is
close to ϕ = 2π and the Ramsey fringe is restored with maximum visibility. The timescale of the observed collisional
phase evolution is in good agreement with the measurements on the Mott insulator transition of the previous section
and ab-initio calculations of the onsite matrix element U [1, 2].



5

FIG. 4: (a) Controlled interactions between atoms on different lattice sites can be realized with the help of spin-dependent lattice
potentials. In such spin dependent potentials, atoms in a, let us say, blue internal state experience a different lattice potential
than atoms in a red internal state. These lattices can be moved relative to each other such that two initially separated atoms
can be brought into controlled contact with each other. (b) This can be extendended to form a massively parallel quantum
gate array. Consider a string of atoms on different lattice sites. First the atoms are placed in a coherent superposition of the
two internal states (red and blue). Then spin dependent potentials are used to split each atom such that it simultaneously
moves to the right and to the left and is brought into contact with the neighbouring atoms. There both atoms interact and a
controlled phase shift ϕ is introduced. After such a controlled collision the atoms are again moved back to their original lattice
sites.

FIG. 5: Visibility of Ramsey fringes vs. hold times on neighbouring lattice sites for the experimental sequence of Fig. 4. The
solid line is a sinusoidal fit to the data including an offset and a finite amplitude. Such a sinusoidal behaviour of the visibility
vs. the collisional phase shift (determined by the hold time thold) is expected for a Mott insulating state with an occupancy of
n=1 atom per lattice site.

MAGNETIC MICROTRAPS

Atom chips [14, 15] combine many important features of a scalable architecture for quantum information processing
[16]: The long coherence lifetimes of qubits based on hyperfine states of neutral atoms [17], accurate control of
the coherent evolution of the atoms in tailored micropotentials [18, 19], and scalability of the technology through
microfabrication [20, 21] – which allows the integration of many qubits in parallel on the same device while maintaining
individual addressability. Furthermore, atom chips offer the exciting perspective of creating interfaces between the
atomic qubits and other QIP systems integrated on the same chip, such as photons in optical fiber cavities or solid-state
QIP systems located on the chip surface [22]. However, the experimental demonstration of a fundamental two-qubit
quantum gate on an atom chip is an important milestone which still has to be reached.

In [23], a first theoretical proposal for a quantum gate on an atom chip was put forward. In this proposal, the
gate operation relies on collisional interactions between two atoms in a state-selective potential on the chip. The
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experimental challenge of implementing such a gate can be divided into several steps:

1. A qubit state pair has to be identified which can be manipulated with electromagnetic fields on the atom chip,
but still allows for long coherence lifetimes in a realistic experimental situation. In particular, attention has to
be paid to decoherence and loss mechanisms induced by the chip surface, which is typically at a distance of only
few microns from the atoms.

2. The gate proposed in [23] requires potentials which affect the two qubit states differently in order to achieve
conditional logical operations between two atoms. A method to create the required potentials on a chip has to
be developed.

3. While Bose-Einstein condensates and thermal ensembles of atoms are routinely manipulated and detected on
atom chips, the existing proposals for quantum information processing on atom chips rely on coherent control
over single atoms. As a first step towards single atom operation, a single atom detector has to be developed
which can be integrated on the atom chip.

4. With a single atom detector available, a method for the deterministic preparation of single neutral atoms in the
motional ground state of chip traps with very low occupation probability of excited states has to be found.

In the following, we develop a scenario in which these challenges can be met with atom chips and discuss our
experiments towards its realization.

Qubit states on the atom chip

Two conflicting requirements have to be met by the qubit states {|0〉, |1〉} chosen for QIP on an atom chip. On the
one hand, both qubit states have to couple to electromagnetic fields which are used for trapping and manipulating the
atoms. In all experiments performed so far, at least a part of the trapping potential is provided by static magnetic
fields generated by wires or permanent magnet structures on the atom chip. It is therefore desirable that both |0〉
and |1〉 are magnetically trappable states. On the other hand, gate operations with high fidelity are only possible if
the coherence lifetimes of the superposition states α|0〉 + β|1〉, (|α|2 + |β|2 = 1) are sufficiently long. Long coherence
lifetimes are possible if qubit basis states are chosen whose energy difference hν10 = E|1〉−E|0〉 is robust against noise
in realistic experimental situations. In particular, technical fluctuations of magnetic fields are notorious for limiting
the coherence lifetime of magnetic-field sensitive qubit states of atoms or ions to a few milliseconds [24]. On atom
chips, magnetic near-field noise due to thermally excited currents in the chip wires is an additional fundamental source
of decoherence for magnetic field sensitive qubit states [25]. To achieve long coherence lifetimes on atom chips, it is
therefore highly desirable to choose a pair of qubit basis states whose energy difference is insensitive to magnetic field
fluctuations.

We choose the |F = 1, mF = −1〉 ≡ |0〉 and |F = 2, mF = +1〉 ≡ |1〉 hyperfine levels of the 5S1/2 ground state
of 87Rb atoms as qubit basis states. The magnetic moments and the corresponding static Zeeman shifts of the two
states are approximately equal, leading to a strong common mode suppression of magnetic field induced decoherence.
Furthermore, both states experience nearly identical trapping potentials in magnetic traps, thereby avoiding undesired
entanglement between internal and external degrees of freedom of the atoms. At a magnetic field of B0 ∼ 3.23G, both
states experience the same first-order Zeeman shift and the remaining magnetic field dependence of the transition
frequency ν10 is minimized [26]. In all of our experiments, we therefore adjust the field in the center of the trap to
B0.

We have studied the coherence properties of the state pair {|0〉, |1〉} on an atom chip in a series of experiments [17],
which we summarize in the following.

The coherence measurements are performed with an ultracold ensemble of atoms, which is prepared in a multi-step
sequence involving loading of the microtrap from a mirror-MOT, compression of the trap and evaporative cooling
[27]. By the end of this sequence, a thermal atomic ensemble of typically Nat = 1.5 × 104 atoms in state |0〉 at a
temperature of 0.6 µK is trapped in a Ioffe-type microtrap. By modulating the currents and offset magnetic fields
used to create this trap, the atoms can be placed at distances d = 0 − 130 µm from the chip surface with only small
changes in the shape of the magnetic potential. It is advantageous to perform the coherence measurements with a
small thermal ensemble instead of a Bose-Einstein condensate, since the higher atomic densities in the condensate
would lead to a stronger inhomogeneous collisional broadening of the qubit transition [26].

Single-qubit rotations are implemented by coupling the states |0〉 and |1〉 through a two-photon microwave-rf
transition as shown in Fig. 6a. The microwave frequency νmw is detuned by δ/2π = 1.2MHz above the |F = 2, mF = 0〉
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FIG. 6: Single qubit rotations between the states |0〉 and |1〉. (a) Ground state hyperfine structure of 87Rb in a weak magnetic
field. The first order Zeeman shift of the states |0〉 and |1〉 is approximately identical. The two-photon transition |0〉 ↔ |1〉 is
driven by a microwave νmw and a radio-frequency νrf . Ωmw and Ωrf are the single-photon Rabi frequencies of the microwave
and rf transition, respectively. (b) Two-photon Rabi oscillations recorded as a function of the microwave and rf pulse length.
The two-photon Rabi frequency is Ω2ph/2π = 0.32 kHz.

intermediate state and radiated from a sawed-off waveguide outside the vacuum chamber. The radio frequency νrf is
either applied to an external coil or to a wire on the chip. νmw and νrf are phase locked to a 10MHz reference from an
ultrastable quartz oscillator. Ωmw and Ωrf are the single-photon Rabi frequencies of the microwave and rf transition,
respectively. By applying the two-photon drive for a variable time and detecting the number of atoms N1 transferred
from |0〉 to |1〉, we observe Rabi oscillations with a resonant two-photon Rabi frequency of Ω2ph/2π = 0.32kHz, see
Fig. 6b. The maximum transition probability, corresponding to a π-pulse, is N1/Nat = 95 ± 5 %.

The two-photon Rabi frequency is given by Ω2ph = ΩmwΩrf/2δ if Ω2
mw, Ω2

rf ≪ δ2 [28], with Ωmw ∼ Ωrf ∼ 2π×25kHz
in our experiment. In the present experiment, the two-photon Rabi-frequency is limited by the available microwave
power of typically a few watts. Instead of radiating the microwave and rf from antennas outside the vacuum chamber,
they can be applied to the atoms much more efficiently by coupling the microwave and rf signal into wires designed
as waveguiding structures on the chip. Consider a waveguide on a chip with a characteristic impedance of Zc = 50 Ω
carrying a microwave signal of P = 1mW, corresponding to a microwave current of Imw =

√

2P/Zc = 6.3mA on the
signal conductor. At a distance of d = 10 µm from the signal conductor, the microwave magnetic field amplitude is
approximately Bmw ∼ µ0Imw/(2πd) = 1.3G. The microwave induces a coupling with a single-photon Rabi frequency
of the order of Ωmw/2π ∼ µBBmw/h = 1.8MHz. This shows that it is advantageous to couple the atomic transitions
with microwave and rf near fields instead of radiation from antennas.

To test for decoherence of the superposition states, we perform Ramsey spectroscopy by applying the following
pulse sequence: The atoms in state |0〉 are held in the trap before a first π/2-pulse creates a coherent superposition of
|0〉 and |1〉. After a time delay TR, a second π/2-pulse is applied, and the resulting state is probed by detecting the
number of atoms transferred to state |1〉. Ramsey fringes are recorded in the time domain by varying TR while keeping
δR = νmw + νrf− ν10 fixed (δR ≪ ν10 ≃ 6.8GHz). Alternatively, Ramsey fringes are recorded in the frequency domain
by scanning δR while TR remains constant. Loss of coherence of the superposition states can show up in different
ways in the Ramsey signal. A spatial variation of ν10 across the atomic ensemble leads to a decay of the contrast of
the Ramsey fringes, while temporal fluctuations of ν10 lead to increasing phase noise on the Ramsey oscillation as TR

is increased.
Figure 7a shows Ramsey interference in the time domain. The number of atoms detected in state |1〉 oscillates at the

frequency difference δR = 6.4Hz, while the interference contrast decays with a coherence lifetime of τc = 2.8 ± 1.6 s.
The measurement shown in Fig. 7a was performed at a distance d = 9 µm from the room-temperature chip surface. In
[26], similar coherence lifetimes are reported for the same state pair, but with atoms in a macroscopic magnetic trap,
far away from any material objects. This suggests that atom-surface interactions indeed do not limit the coherence
lifetime in our present experiment.

To further probe for surface effects, we study the decoherence of the Ramsey signal as a function of atom-surface
distance. Atomic ensembles are prepared in traps at different distances d from the surface. In each trap, we record
Ramsey oscillations in the frequency domain for several values of TR and determine the contrast C(TR) of each
oscillation. Figure 7b shows the result of these measurements for TR = 50ms and TR = 1 s. Within the experimental
error, the contrast does not show a dependence on atom-surface distance for d = 5 − 130 µm. Additionally, we have
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FIG. 7: Coherence lifetime measurements for the qubit state pair. (a) Ramsey spectroscopy of the |0〉 ↔ |1〉 transition with
atoms held at a distance d = 9 µm from the chip surface. An exponentially damped sine fit to the Ramsey fringes yields a 1/e
coherence lifetime of τc = 2.8 ± 1.6 s. Each data point corresponds to a single shot of the experiment. (b) Contrast C(TR)
of the Ramsey fringes as a function of atom-surface distance d for two values of the time delay TR between the π/2-pulses.
For each data point, C(TR) = (Nmax − Nmin)/(Nmax + Nmin) was obtained from a sinusoidal fit to frequency-domain Ramsey
fringes. Nmax (Nmin) is the maximum (minimum) of the oscillation in N1.

compared the signal-to-noise ratio S/N of the interference signal in the different traps. We typically observe S/N = 6
for TR = 1 s, where S is the peak-to-peak amplitude of the sinusoidal fit to the Ramsey oscillation and N is the
standard deviation of the fit residuals over one oscillation period. S/N is independent of d within experimental error,
indicating that the processes causing amplitude and phase fluctuations of the interference signal do not depend on
atom-surface distance on this time scale. The observed noise on the Ramsey oscillation is mostly phase noise and can
be attributed to ambient magnetic field fluctuations, which are independent of atom-surface distance.

Our experiments show that the robust qubit state pair considered here can be manipulated on the atom chip with
coherence lifetimes τc > 1 s at distances down to a few microns from the chip surface. In the proposal for a quantum
controlled phase gate on an atom chip [23], a gate operation time of τg = 0.4ms was estimated. Implementing this
gate with our qubit state pair, τc/τg ∼ 103 gate operations could be performed before decoherence from magnetic
noise occurs. In contrast, in the original proposal of [23], the qubit is encoded in two states with a magnetic-field
sensitive energy difference. The magnetic field sensitivity is more than a factor of 103 higher than for our state pair,
so that expected coherence lifetimes would be comparable to the gate operation time.

State-dependent microwave potentials

An implementation of the phase gate proposed in [23] with our qubit state pair requires potentials which affect the
two qubit states differently. However, a combination of static magnetic and electric fields, as considered in [23, 29],
does not provide state-selective potentials for our state pair, whose magnetic moments and electrostatic polarizabilities
are equal. Optical potentials created by focussed laser beams with a frequency close to the D1 or D2 transition of
87Rb are also impractical: if the detuning of the laser from the atomic resonance is much larger than the hyperfine
splitting of the 87Rb ground state, the resulting optical potentials are again nearly identical for the states |0〉 and |1〉.
If, on the other hand, a detuning comparable to the hyperfine splitting is used, a differential optical potential could
be created, but problems with decoherence due to spontaneous scattering of photons would arise.

To generate the state-dependent potential for our qubit, we propose to use microwave potentials in addition to static
magnetic potentials on the atom chip [17]. Microwave potentials arise due to the AC Zeeman effect (the magnetic
analog of the AC Stark effect) induced by tailored microwave near-fields. In 87Rb, microwave potentials derive from
magnetic dipole transitions with a frequency near ω0/2π = 6.835GHz between the F = 1 and F = 2 hyperfine
manifolds of the ground state. The magnetic component of a microwave field of frequency ωmw = ω0 + ∆ couples the
|F = 1, m1〉 to the |F = 2, m2〉 sublevels and leads to energy shifts that depend on m1 and m2. In a spatially varying
microwave field, this results in a state-dependent potential landscape.

In Fig. 8a, this situation is shown for a 87Rb atom subject to a static magnetic field B0(r), which defines the
quantization axis, in combination with a microwave magnetic field Bmw(r) cos(ωmwt). The static field gives rise to
the static Zeeman potential UZ(r) = µBgF mF |B0(r)|, which is identical for the qubit states |0〉 and |1〉, since for both
states gF mF = 1/2. For simplicity, we assume that Bmw(r) is oriented parallel to the static field B0(r), corresponding



9

FIG. 8: State-dependent microwave potentials for the qubit states. (a) Energy-level diagram of the hyperfine structure of the
87Rb ground state in a combined static magnetic and microwave field. UZ indicates the energy shift due to the static Zeeman
effect, which is identical for |0〉 and |1〉. The magnetic field of the microwave couples the levels of F = 1 to the levels of F = 2,
giving rise to energy shifts U1 (U0) for state |1〉 (|0〉), here shown for pure π polarization and ∆ < 0 (red detuning). This shift
has opposite sign for |0〉 and |1〉. (b) Chip layout and state-dependent double well potential for a collisional phase gate on the
atom chip. The three gold conductors form a coplanar waveguide of width w for the microwave. Is (Ig) are the currents on
the signal (ground) wires. The wires carry both stationary and microwave currents, see text. In combination, these currents
create the potential UZ + U1 for state |1〉 and UZ + U0 for state |0〉 at a distance d from the chip surface.

to pure π polarization of the microwave. The microwave field thus couples the transitions |0〉 ↔ |F = 2, mF = −1〉
and |F = 1, mF = 1〉 ↔ |1〉 with identical resonant Rabi frequencies ΩR(r) =

√

3/4µB|Bmw(r)|/~. In the limit of
large detuning ~|∆| ≫ ~ΩR, UZ , the coupling leads to microwave potentials given by

U1(r) = −~|ΩR(r)|2
4∆

and U0(r) =
~|ΩR(r)|2

4∆

for |1〉 and |0〉, respectively. Since the qubit state |0〉 belongs to F = 1 while |1〉 belongs to F = 2, the microwave
potential has opposite sign for the two states, giving rise to the desired state-dependence of the potential.

In a combined static magnetic and microwave trap, in general both B0(r) and Bmw(r) vary with position. This
leads to a position-dependent microwave coupling with in general all polarization components present. If ~|∆| ≫
~ΩR, UZ , the energy shifts due to the microwave coupling can be evaluated for each transition seperately. The overall
magnetic microwave potential for the level |F, mF 〉 equals the sum of the energy shifts due to the individual transitions
connecting to this level. The Zeeman splitting due to the static field (a few MHz) prevents two-photon transitions
between sublevels mF belonging to the same F quantum number.

A trap for neutral atoms based on microwave potentials has been proposed in [30] and experimentally demonstrated
in [31]. This trap employs microwave radiation in the far field of the source. Unlike in the case of optical radiation,
which can be tightly focussed due to its short wavelength, the centimeter wavelength λmw of microwave radiation
poses severe limitations on far-field traps: field gradients are very weak [31] and structuring the potential on the
micrometer scale is impossible.

On atom chips, there is a natural solution to this problem [17]. The atoms are trapped at distances d ≪ λmw

from the chip surface. Thus, they can be manipulated with microwave near fields, generated by microwave signals in
on-chip transmission lines [32]. In the near field of the source currents and voltages, the microwave fields have the
same position dependence as the static fields created by equivalent stationary sources. The maximum field gradients
depend on the size of the transmission line conductors and on the distance d, not on λmw. In this way, state-dependent
microwave potentials varying on the micrometer scale can be realized. In combination with state-independent static
magnetic microtraps, the complex potential geometries required for QIP can be realized.

The state-dependent double well potential needed for the phase gate proposed in [23] can be created with a chip
layout as shown in Fig. 8b. The three wires form a coplanar waveguide for the microwave. They carry both microwave
and stationary currents, Is = Ic + Imw cos(ωmwt) and Ig = Io − (Imw/2) cos(ωmwt). The stationary currents Ic and Io

flow in opposite directions and create a static magnetic double well potential at a distance d from the chip surface, as
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discussed in [14]. We assume that the atoms are tightly confined in the transverse dimensions by a static magnetic
potential created by additional wires not shown in the figure. The microwave currents create a microwave potential
which is used to selectively remove the barrier of the double well for state |0〉, while increasing the barrier height
for state |1〉 (Fig. 8b). Note that for ∆ < 0, as in the figure, the labeling of the states |1〉 and |0〉 is interchanged
compared to [23].

To give a specific example, we consider atoms in a static-field trap at d = 1.8 µm from a microwave guiding
structure of size w = d carrying a microwave signal of amplitude Imw = 15mA. A simulation of the microwave
field yields a coupling with ΩR/2π ∼ 3.3MHz at the position of the static double well barrier, taking into account
the magnetic microwave field of the signal wire and both ground wires. For ∆ = 10 ΩR, the change in the static
magnetic moment of the qubit states due to the coupling is of the order of 10−3, such that both states still experience
approximately the same static magnetic potentials. The microwave, on the other hand, leads to a differential energy
shift of U1−U0 = h ·160kHz, sufficiently large to remove the barrier for state |0〉. A detailed simulation for a realistic
atom chip design shows that an improved version of the quantum phase gate of [23] can be implemented with our
robust qubit state pair using microwave potentials on the atom chip. We find an overall gate fidelity of F = 0.996 at
a gate operation time of τg = 1.1ms [33], compatible with the requirements for fault-tolerant quantum computation.

Qubit readout in microtraps

The QIP schemes considered here use single atoms as qubit carriers, and thus the final readout requires single-atom
detectivity. Again, the ability of atom chips to independently transport the individual qubit atoms is a key advantage:
atoms can be brought close together for interaction, but spaced far apart and even transported to a remote detector
for readout. This removes the optical resolution limitation that is still an unsolved problem in optical lattices. Thus,
the basic requirement on an atom chip qubit detector is single-atom detectivity and compatibility with the presence
of the chip. In our experiments, we have focused on optical detectors, where fast progress could be achieved. As
an additional feature beyond single-atom detectivity, we have concentrated on detectors that will ultimately allow
quantum non-demolition (QND) measurement of the number of atoms. A QND trapped-atom detector would only
perturb the phase of the atomic state, but not, in particular, its vibrational energy in the trap. Therefore, such a
detector could also be used in qubit preparation, for example in a “feedback loop” that prepares a single-atom state
from a larger initial BEC, by combining it with a switchable loss mechanism.

To detect an atom optically, either absorption or dispersion can be used. The collection of fluorescence light from
a single trapped atom is possible and has recently enabled remarkable experiments [34, 35]. However, the recoil from
the spontaneously emitted fluorescence photons causes heating, ruling out the possibility of a QND measurement.
It might seem that single-pass dispersive detection would offer a straightforward solution: the atom trap would be
positioned in one arm of an interferometer, operating at a wavelength that is detuned far away from the atomic
transitions. However, to reach the high sensitivity required for single-atom detection, a large number of photons must
be sent through the interferometer, and it turns out that even this type of detection inevitably leads to spontaneous
emission [36, 37]. The situation changes when an optical cavity is used to enhance the interaction of the atom with
the optical field. In this case, single-atom detection with high signal-to-noise ratio is possible with less than one
spontaneous emission on average, and improves with high cavity finesse F and small mode cross-section w2.

This situation is adequately analyzed in the framework of cavity QED (cQED) [38]. The fundamental cavity
QED parameters are the coherent atom-photon coupling rate g0, the cavity damping rate κ and the linewidth of the
atomic transition γ. For single-atom detection, these parameters do not enter independently, but in the combination
C = g2

0/2κγ called the cooperativity parameter. The onset of the QND regime corresponds to C > 1. Note that this
condition is not identical with the strong coupling regime of cQED, g0 > κ, γ. Indeed, QND detection is possible even
in the regime of weak coupling.

To translate the cooperativity criterion C > 1 into requirements on the cavity, it is instructive to analyze how g0

and κ relate to the design parameters of the cavity. For a symmetric Fabry-Perot (FP) cavity, these are the mirror
radius of curvature R, the effective cavity length d, and the cavity finesse F ≈ π/(T + ℓ), where T and ℓ are the
transmission and losses of a single mirror. One finds

κ ∝ F−1d−1 (3)

g0 ∝ d−3/4R−1/4 (4)

C ∝ (LR)−1/2 (5)

(6)
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C can be alternatively expressed as

C =
3λ2F
π3w2

(7)

where w is the mode waist diameter (and we assume that the atoms are placed in this waist). This latter relation
makes it intuitively clear why C is the relevant parameter for single-atom detection efficiency: it is proportional to
F (number of round-trips of a cavity photon), and inversely proportional to the mode waist diameter (which is to be
compared to the atomic scattering cross-section σ). These relations hold within the stability range of the cavity, and
as long as the mode diameter on the mirrors is small compared to the mirror diameter, so that clipping loss can be
neglected.

For the extremely short, small-volume cavities that we consider here, γ is always much smaller than κ and g0.
Therefore, if the goal is to enter as far as possible into the strong-coupling regime, the cavity should optimize g0/κ,
i.e., increase the mirror distance d towards the limit of the stability range. Indeed, for a given mirror curvature, κ
drops as κ ∝ d−1, whereas g0 only decreases as g0 ∝ d−3/4, as long as d ≪ R: the ratio g0/κ increases with growing d
despite the decrease in the absolute value of g0. By contrast, a cavity for single-atom detection should be designed to
optimize the cooperativity C. According to the above proportionalities, this means that it should have a short length
and small radius of curvature. A high finesse is obviously beneficial in both cases.

Stable fiber Fabry-Perot cavities

The “gold standard” for cQED cavities is still being set by macroscopic FP cavities with superpolished, concave
mirrors. These mirrors have relatively large radii of curvature (R = 20 cm is typical) and achieve record finesse values
of F > 2 × 106 [39]. However, these cavities are not compatible with a chip-based microtrap. The trap-surface
distance is . 250 µm, whereas the diameter of existing superpolished FP mirrors is at least ∼ 1 mm, so that it would
be extremely difficult to place the optical axis sufficiently close to the substrate surface and still maintain the tight
mirror spacing required for high C. We have developed stable, fiber-based Fabry-Perot resonators (FFPs) [37] that
avoid this problem. They employ concave dielectric mirror coatings with small radius of curvature, realized on the
fiber tip. A stable cavity is constructed from two closely spaced fiber tips placed face-to-face (figure 9(a)). Thus, as
an important difference to other microcavities such as microtoroid resonators (see for example [40]), the cavity mode
is located in free space between the fibers, thus avoiding the extremely restrictive positioning requirements imposed
by evanescent-field coupling.

FIG. 9: (a) Concept of the stable FFP cavity. The basic building block is an optical fiber functionalized with a concave
dielectric mirror. Two such fibers, brought sufficiently close to each other, result in a stable Fabry-Perot cavity which can
be interrogated remotely, either in transmission or in reflection, through the two fibers (b) A single-mode optical fiber, total
diameter 125 µm, processed with a concave mirror. The mirror has radius 1000 µm with a stopband centered at 780 nm. (c) A
complete FFP cavity, realizing the configuration (a), mounted on an atom chip used in the detection of cold atoms (Fig. 11).
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FFP cavity fabrication and performance

We have fabricated stable, miniature FFP cavities using two different methods. Method 1 uses a commercially
available lift-off coating [41]. The coating is produced on a convex template (we use a commercial ball lens), and
then glued onto the fiber tip. After curing the transparent epoxy glue with UV light, the coating sticks to the fiber
and a small force is enough to detach it from the ball lens template. The result is a fiber functionalized with a
highly reflecting concave mirror, as shown in Fig. 9(b). A complete FFP cavity is shown in Fig. 9(c). This method
reproducibly leads to cavity finesse values F > 1000 with modest experimental effort. We have used a cavity of this
type to detect magnetically guided and trapped atoms, as described below. Method 2 employs laser surface processing
to produce a low-roughness concave depression on the fiber tip, followed by multilayer coating using the ion beam
sputtering technique. With this technique, we obtain finesse values F ∼ 35000 [42].

In both cases, because of the small fiber diameter (125µm), very short cavities (< 10λ/2) can be realized even
when radii of curvature R ≤ 1 mm are used, still leaving a sufficiently large gap to introduce cold atoms. Let us
consider the concrete example of a cavity that we have fabricated using method 1. The mirror curvature is R = 1 mm
and the distance d = 27 µm, leading to a mode volume Vm = 600 µm3, to be compared to Vm = 1680 µm3 for the
smallest-volume macroscopic FP cavity that has been used with atoms [43]. In terms of cavity QED parameters, the
small mode volume results in an exceptionally high coherent atom-photon coupling rate, g0/2π = 180 MHz (calculated
for the Rb D2 line at λ = 780 nm). Therefore, in spite of a comparatively high cavity damping rate κ/2π = 2.65 GHz,
which results from the moderate finesse of the transfer coating and short cavity length, the cavity reaches a single-
atom cooperativity parameter greater than unity, C = g2

0/2κγ = 2.1, (for the Rb D2 line, γ/2π = 3.0MHz) signaling
the onset of quantum effects such as enhanced spontaneous emission into the cavity mode [38] and a significant
modification of cavity transmission by the presence of a single atom.

Below we present an experiment in which we use the two-fiber cavity to detect an extremely small number of cold
atoms magnetically trapped in the cavity using an atom chip. What is still missing is an improved absolute calibration
of these results in order to determine whether they already realize, or only come close to single-atom detectivity. In
any case, considering that the “method 2” cavities are now available and improve finesse by a factor 30, it seems
clear that the problem of qubit detection can be solved using our FFP technology. Beyond QIP, we believe that this
cavity type is also attractive for experiments exploiting the strong optical dipoles of semiconductor quantum dots,
semiconductor nanocrystals and molecules, and for channel separation in telecommunication.

On-chip atom detection with a FFP cavity

We have detected magnetically trapped atoms with an FFP cavity on an atom chip [41]. The atoms are trapped
on the chip and evaporatively cooled as in our previous experiments [17], but on a chip which incorporates the
FFP resonator fabricated according to method 1 described above (Fig. 10). Trapped and guided atoms could be
reproducibly detected in a great variety of experimental parameters and procedures. The cavity transmission signal
allowed detection with good signal-to-noise ratio even when the atom number was far too small to be visible by
our absorption-imaging camera system. A typical temperature of the atom cloud in the resonator was around 1 µK,
with typical longitudinal and transverse trap frequencies around 100Hz and 1 kHz, respectively. Clouds containing
extremely few atoms were prepared using the RF knife, by applying repeated, rapid radiofrequency scans across the
“trap bottom” frequency.

Figure 11 shows a cavity transmission spectrum recorded by scanning the probe laser across the D2 atomic transition
for a fixed atom-cavity detuning of δcav = 0. Each point in the spectrum corresponds to a complete experimental
sequence of preparation, evaporative cooling, positioning and detection. The atoms are initially trapped in the
|F = 2, m = 2〉 ground state. The three transmission minima correspond to transitions from this state to the
F = 1, 2, 3 sublevels of the 5p3/2 excited state. We have recorded such spectra for various δcav and for different mean
atom numbers.

The parameter of interest is the minimum number Nmin of atoms that must interact with the cavity mode in order
to produce a detection signal with a good signal-to-noise ratio, say, 4. The actual number of detected atoms is more
difficult to extract from the measurements than with a macroscopic resonator. This is mainly due to large error bars
on the measured on-resonance cavity transmission, which in turn are caused by the fact that incoupling mirror and
fiber cannot be separated. For the resonator used in the experiment described here, the on-resonance transmission
is in the permille range. This is due to an excessive number of layers in the dielectric mirror stack, applied by the
coating manufacturer in an attempt to maximise the reflectivity. This problem no longer occurs with the cavities
fabricated later according to method 2. In the experiments described here, however, the low transmission means that
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FIG. 10: The chip used for detecting magnetically trapped atoms by their interaction with a single optical mode in a fiber
Fabry-Perot (FFP) cavity. The position of the cavity is indicated in exaggerated size for better visibility. Atoms are first
trapped in the structures on the left side of the picture, then transported towards the cavity and evaporatively cooled in a
multistep procedure and finally positioned in the resonator mode, where they are detected by the change in cavity transmission.

FIG. 11: Cavity tranmission spectrum without atoms (upper, red curve) and with atoms magnetically trapped in the on-
chip FFP cavity (lower, black curve). The atom-cavity detuning is fixed at δcav = 0. Each point corresponds to a complete
experimental sequence of preparation, evaporative cooling, positioning and detection, for the atom-laser detuning indicated on
the abscissa. Lines are to guide the eye. Zero probe laser detuning corresponds to the F = 2 → F ′ = 3 transition within the
D2 multiplett.

for every detected photon, roughly 103 photons have interacted with the atom without contributing to the signal.
They do, however, contribute to heating due to spontaneous-emission, and we therefore expect the detectivity in this
experiment to be limited by this spontaneous heating. Nevertheless, we expect Nmin to be close to or below 1.

From atom number measurement by absorption imaging, we can infer an upper limit of Nmin which is of the order
of 50 atoms. A much more precise value of Nmin can be obtained from spectra such as in Fig. 11. These spectra were
obtained with an FFP cavity of relatively low finesse F ∼ 260. This corresponds to a weak-coupling regime in which
the atom-cavity interaction can be understood semiclassically. The spectra depend very strongly on the mean atom
number in the cavity. We are now using a semiclassical model to fit the spectra, which will allow us to determine the
actual number of intracavity atoms with good precision without the need to know the absolute cavity transmission.
In this way, we will be able to determine the detectivity from the experimental results.
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These results demonstrate the suitability of FFP resonators for qubit readout on atom chips. The combination
of this new cavity type with atom chips will enable new applications beyond atom detection. The laser-machined
resonators, (method 2 described above), which we are now integrating into an atom chip experiment, reach a finesse
F ∼ 35000, combined with an exceptionally small mode volume. For these resonators, with a mirror spacing of
d = 25 µm, one obtains g0 ∼ 2π × 400 MHz and g0/κ ∼ 4, entering the strong-coupling regime of cavity QED. But
even in the regime of weak coupling, trapping an ultracold atom cloud in an optical cavity of high cooperativity,
as demonstrated here, is a new experimental option which can radically simplify the implementation of high-fidelity
atom-photon interfaces, for example in quantum communication [44].

Single atom preparation

With the advent of single-atom detectors on atom chips, it becomes possible to address the problem of deterministic
single-atom preparation. For the QIP schemes considered here, each qubit is a single atom in the ground state of a
magnetic potential. A first, simplistic approach is to start from a BEC and induce losses to reduce the atom number
to an average value of 1. With a QND detector, the actual number can be measured, and further reduced if necessary,
with negligible excitation and loss. Nevertheless, this “trial-and-error” method becomes impractical for large numbers
of qubits. Proposals for deterministic single atom preparation have been put forward in [45, 46]. The key element
in these methods is a tightly confining potential, in which states with 1, 2 etc. atoms are energetically resolved due
to the collisional interaction. A BEC serves as a reservoir from which single atoms can be repeatedly extracted in a
deterministic way. Atom chips appear ideally suited to implement this idea, and we expect it to be experimentally
realized within the next two years.

CONCLUSION

The fast experimental progress made with atoms in optical lattices and magnetic microtraps underlines the great
potential of ultracold quantum gases for applications in QIP. In the experiments with optical lattices described here,
a massively parallel quantum gate array was demonstrated for the first time [13], which allows the creation of a highly
entangled many-body cluster state. In the future, it is important to explore quantum computing schemes which rely
only on single-atom operations and measurements on the entangled many-body state. New theoretical developments
show that even without the possibility of performing single-atom manipulations in the optical lattice, a quantum
computer based on the controlled collisions demonstrated here could simulate a large class of complex Hamiltonians
with translational invariance, which play an important role in condensed-matter physics.

A general quantum computer, however, requires the possibility to perform single-atom operations and measure-
ments. The fiber Fabry-Perot resonators described here are an ideal system for achieving this goal. The detection of
very small atom numbers was demonstrated in our experiments with a FFP resonator integrated on the atom chip
[41]. It seems clear that the problem of single qubit detection can be solved in the nearest future with the technical
improvements of this detector which have been recently implemented [42]. We have furthermore shown that using
a qubit state pair which is robust against magnetic-field fluctuations, coherence lifetimes exceeding one second can
be achieved on an atom chip with atoms at distances down to a few microns from the chip surface [17]. Based on
these developments, the main experimental challenges for the future are the reproducible preparation of single-atom
states and the implementation of a quantum phase gate using microwave potentials on the atom chip. The theoretical
fidelity of such a gate is 0.996 [33], compatible with the requirements for fault-tolerant quantum computation.

The success of these future experiments will determine whether QIP with neutral atoms is an advantageous alterna-
tive to other systems such as trapped ions, and allows the experimental investigation of even more complex problems
such as quantum error correction.
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