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Abstract

We propose an atom—cavity chip that combines laser cooling and trapping of
neutral atoms with magnetic microtraps and waveguides to deliver a cold
atom to the mode of a fibre taper coupled photonic bandgap (PBG) cavity.
The feasibility of this device for detecting single atoms is analysed using
both a semiclassical treatment and an unconditional master equation
approach. Single-atom detection seems achievable in an initial experiment
involving the non-deterministic delivery of weakly trapped atoms into the

mode of the PBG cavity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The development of techniques necessary to manipulate single
atoms and photons and to control their interactions is an
important addition to the toolbox of nanotechnology. An
important advance would be the development of a compact
and integrable device to serve as a single-atom detector [1, 2].
The system comprised of a strongly interacting atom and
photon—cavity quantum electrodynamics (QED) [3-5]—
provides the basis for realizing such a device. These single-
atom detectors could play as important a role in the burgeoning
field of atom optics [6] as single-photon detectors do in
conventional optics. The advent of Bose—Einstein condensates
(BECs) of neutral atoms and the production of degenerate
fermionic condensates [7] further highlights the importance
of developing single-atom read-out devices.

To achieve these goals in cavity QED, a neutral atom must
be inside the mode of a high finesse cavity with small mode
volume: the atom—cavity system must be in the strong coupling
regime. Strong coupling requires the atom—cavity coupling,
80, to be much larger than both the atomic dipole decay rate,
y.1, and the decay rate of the cavity field, . Specifically, the
saturation photon number, my = yf / Zg(z), and the critical atom
number, Ng =2y, k/ gé, must both be much less than unity.
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State-of-the-art cavity QED experiments have achieved
strong coupling parameters as small as [mg, No] =
[107%,107?] by either dropping [8] or vertically tossing [9]
a cold neutral atom between the mirrors of a high finesse,
low mode volume Fabry—Perot cavity. Recently, intracavity
atom trapping for durations up to 3 s has been demonstrated
by coupling a secondary optical beam into the Fabry—Perot
cavity to form a far off resonance trap (FORT) [10].

The intent of this paper is to introduce a cavity QED
system based on magnetostatic delivery of atoms to a
photonic bandgap cavity, and to discuss the ability of this
system to detect single atoms. This experimental system—
magnetostatic confinement of atoms inside the field modes of
photonic bandgap cavities—raises the possibility of achieving
an experimentally robust, integrated, and scalable system.
Mastering the integration of a single atom and photons—
quintessentially quantum components—presents an entirely
new prospect for technology: quantum computation and
communication. Cavity QED provides a rich experimental
setting for quantum information processing (QIP), both in the
implementation of quantum logic gates and in the development
of quantum networks [11, 12]. While not necessary for
single-atom detection, confining the atom in the Lamb-—
Dicke regime inside the cavity for long periods of time is
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an important step towards accomplishing QIP using cavity
QED. An atom is trapped in the Lamb-Dicke regime when its
recoil energy is less than the trap’s vibrational level spacing,
N = (Ercoil/Evip)"/?> < 1. This regime has been achieved
using a FORT [10], and magnetic microwire traps—such as
those discussed in this paper—may also be capable of trapping
atoms three-dimensionally inside a cavity in the Lamb-Dicke
regime [13, 12].

2. Magnetic microtraps and photonic bandgap
cavities

Patterns of micron-sized wires can create magnetic field
gradients and curvatures sufficiently large to accurately guide
and trap atoms above the surface of the substrate [13].
These magnetic microtrap devices—commonly known as
atom chips [14, 15]—can be fabricated using standard
photolithography techniques [16, 17] and have been
successfully used not only to trap and waveguide neutral
atoms, but also to create and manipulate Bose—Einstein
condensates [18, 19]. -

Atom chips exploit the interaction potential, V = —ji- B,
betwegn an atom’s magnetic moment, ji, and a wire’s magnetic
field, B, to trap or guide weak field seeking states of a neutral
atom. The simplest example of a magnetic microtrap involves
the combination of the field from a U-shaped wire with a
homogeneous bias field, Byiys [20]. The bias field, parallel to
the wire substrate and perpendicular to the base of the U-wire,
serves to cancel the curling field of the wire to form a two-
dimensional quadrupole trap for the weak field seeking atoms.
The atoms are confined in the third dimension by the fields from
the side wires of the U-trap, forming a cigar-shaped trap above
the wire surface. The position of the trap minimum above the
wire surface, r, and the gradient of the trap are completely
determined by the magnitude of By;,s and the current, /7, in the
U-wire,

I 27 B2
P B = = Zbias )
27 Buias Mo !

For example, with a wire current of 1 A and a bias field of
10 G, the atoms are trapped 200 um above the surface in
a field gradient—perpendicular to the base of the U-wire—
of 500 Gem™'. Toffe traps—which are not susceptible
to trap losses due to Majorana spin flips—may be formed
either by a similar Z-trap [20] or by using wires forming
patterns of nested arcs [13]. Although this latter Ioffe trap
is more complicated, it does allow the possibility of trapping
atoms three-dimensionally in the Lamb-Dicke regime inside a
photonic bandgap cavity coplanar with the wires [12]. Simple
waveguides for the atoms can be formed from the Z-trap
by extending the base of the Z-wire, allowing the atoms
to ballistically expand along the field minimum above the
elongated wire. Beam splitters and conveyor belts have been
demonstrated using similar techniques [14, 15].

Standard laser cooling and trapping techniques [21] are
used to load cold atoms into the magnetic microtraps and
waveguides. Typically, atoms are collected in a variant of the
magneto-optical trap (MOT) that uses the atom chip surface
as a mirror to form four of the six required laser cooling
beams [20]. This mirror MOT and subsequent sub-Doppler

cooling allows the collection of approximately 10° atoms
of temperature 10 ©K a few millimetres above the chip’s
surface. Conveniently, the quadrupole field from the U-trap
is in the same orientation as the magnetic field required to
form a mirror MOT. In the simplest case, the atoms can
be transferred to the U-trap by replacing the mirror MOT’s
quadrupole field with that of the U-trap while maintaining
the cooling lasers in the same configuration: this creates a
U-MOT using the microwire magnetic field. An alternative
and more experimentally compact and robust method—and the
one employed in our lab—traps the atoms directly from vapour
using a large copper U-shaped block carrying 30 A and located
underneath the atom chip [22]. The atoms in this macro-U-
MOT are subsequently transferred to smaller, magnetostatic
U-traps on the atom chip surface.

The proximity of the atoms to the chip’s surface naturally
facilitates the integration of magnetically trapped atoms with
on-chip cavities such as microdiscs or photonic crystals. Two-
dimensional photonic bandgap (PBG) cavities—perforated
semiconductor structures that confine light through the dual
action of distributed Bragg reflection and internal reflection—
are in many respects ideal for cavity QED [23]. Their small
mode volume and modest quality factors open the possibility
of achieving extremely small strong coupling parameters:
[mg, Nol = [10’8, 10’4]. With regard to atom—cavity
coupling, these cavities have the advantage over microdiscs
and microspheres in that the mode’s field maximum can be
located in the holes rather than inside the dielectric material.
As an inherently stable, monolithic structure, PBG cavities
will not need the support structure for active stabilization that
Fabry—Perot cavities require. Moreover, their compactness
and compatibility with fibre optics-based input and output
couplers [24, 25] allow one to envision an array of PBG
cavities, atom microtraps, input/output couplers, and other
processing devices all on the same integrated chip.

We plan to use PBG cavities of the graded defect design
discussed in [26], which consist of a rectangular lattice
of airholes in an optically thin, high refractive index slab
waveguide. The holes gradually decrease in diameter towards
the cavity centre, and experimental measurements of such
cavities fabricated in silicon membranes (see figure 1(a))
and operating at A ~ 1.6 pum possess Qs as high as
40000 with modal volumes of V. ~ 0.9 cubic wavelengths
(x/n)? [27]. In future experiments with single atoms, cavities
will be etched in a thin AlGaAs membrane, chosen for its
transparency at the wavelength of caesium’s D2 transition,
852 nm. For the Q and V.4 values mentioned above,
the atom—cavity coupling can be a high as go = 27 X
17 GHz while the decoherence rates are [«,y,]/2m =
[4.4 GHz, 2.6 MHz]. This gives strong coupling parameters
of [mg, No] = [1.2x 107%,8.4 x 107°], which are much
smaller than those achieved in recent experiments using Fabry—
Perot cavities, [mg, No] = [2.8 x 107*, 6.1 x 10_3] [8]. The
central hole diameter is ~100 nm and the membrane thickness
is ~170 nm. An atom in this small hole will be affected by
the Casimir—Polder potential [29], and cavity QED dynamics
in the presence of this force will need to be investigated.

The cavity is coupled to a photonic crystal waveguide,
which in turn is evanescently coupled to an optical fibre taper.
By positioning the fibre taper—whose minimum diameter is of
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Figure 1. (a) A scanning electron microscope (SEM) image of a
photonic bandgap cavity and waveguide (WG) fabricated in silicon.
(b) A schematic diagram of the fibre taper coupler. (c) The finite
difference time-domain calculated electric field amplitude of the
cavity mode taken in the centre of the membrane. (d) An SEM
image of an optical fibre taper aligned above a photonic crystal
waveguide.

the order of a micron—in the near field of the photonic crystal
waveguide and aligned along its axis (see figures 1(b) and (d)),
highly efficient (greater than 98%) fibre coupling into and out
of the photonic crystal waveguide can be achieved [25]. Light
coupled into the photonic crystal waveguide is reflected by the
PBG cavity and recollected in the backward propagating fibre
taper mode [28]. Figure 1(a) shows the boundary between
the waveguide and the cavity: the top four rows of holes
are the end of the waveguide, which is formed in a similar
fashion to the cavity, except that the holes are graded in
only the lateral dimension. This design maximizes the mode
matching between the waveguide and the cavity modes [24].
The waveguide may be bent to allow access to the cavity
unencumbered by the fibre.

3. Experimental proposal

As a first-generation experiment, we would like to bring a
trapped cloud of cold neutral atoms—caesium in our case—
into contact with a PBG cavity, simultaneously demonstrating
the integration of a cavity with an atom chip and the strong
coupling of a neutral atom to a PBG cavity. Figure 2 shows a
rough schematic diagram of the atom—cavity chip experiment.
The chip is divided into two regions, one for laser trapping
and cooling of the atoms in a U-MOT and U-traps, and the
other for the PBG cavity and its tapered fibre and photonic
crystal waveguide couplers. The two regions are connected
by a microwire waveguide to transport the atoms from the
laser cooling region to the PBG cavity. These regions must
be separated by 1-2 cm in order for the bulk of the cavity
to not obstruct the 1 cm? U-MOT beams. Furthermore, to
position the cavity outside of the horizontal U-MOT beam that
grazes the substrate surface, the waveguide must convey the
atoms around a 90° turn. This will be accomplished either by
using a two-wire guide (chosen for depiction in figure 2 for
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Figure 2. A schematic diagram of the atom—cavity chip experiment.
The microwire U-traps and atomic waveguides are shown as yellow
wires (light grey), and the light red area (lightest grey) centred about
the U-traps represents the footprint of the reflected trapping lasers.
The atoms are the red (dark grey) cylinders, pictured as they are
transported towards the PBG cavity which is shown as the black
chip glued to the substrate’s surface. The grey line is the optical
fibre and fibre taper.

simplicity of illustration) [30] or by rotating the atoms in a P-
trap—similar to a U-trap but with the base wire bent allowing a
rotating bias field to change the orientation of the atoms [31]—
before transferring the atoms into a Z-trap waveguide aligned
perpendicular to the initial U-trap. This latter design has the
advantage that the simple addition of a few coplanar wires can
serve to loosely confine the atoms once they reach the PBG
cavity.

In the PBG region, the atoms are suspended a few hundred
microns above the surface of the waveguide’s microwires, and
this allows enough room for the ~200 pm thin PBG substrate
to be placed in the gap between the atoms and the microwires.
Once the atoms are transported to a position above the PBG
cavity, the current and bias field of the guide are adjusted
to lower the cold atom cloud into the surface of the PBG
cavity. A thermoelectric cooler (TEC) is located near the PBG
cavity to counteract heating due to the microwire waveguide,
maintaining a specific cavity detuning from the frequency
driving laser and the atomic resonance. We estimate a cavity
tunability of 20 GHz °C~!, and with TEC control of 10~2°C,
we should be able to achieve a200 MHz tuning resolution. This
resolution is sufficient, as we expect to operate with detunings
of the order of 1-10 GHz.

The delivery scheme described above provides a non-
deterministic source of weakly trapped atoms to the cavity
mode. The field of the cavity mode is concentrated in the
central ~10 holes (see figure 1(c)). The field maximum is
offset by 45 nm from the axis of each of the two centre holes.
We expect to transport 10° atoms in a cigar-shaped cloud of
density 10" cm™. The cross-sectional area of this cloud
parallel to the chip is larger than the 0.4 um? area of the PBG
cavity thatis occupied by the field, and we estimate that there is
a ~10% probability of an atom encountering one of the central
10 holes per cloud interaction. With an experimental repetition
once every ~5 s—Ilimited by the U-MOT replenishing time—
we foresee the accumulation of a significant number of events
in a reasonable amount of time, and as discussed in section 4
below, we expect to detect strong signals during single-atom
transits through the PBG cavity’s central holes. If we assume
a caesium cloud temperature of 10 K, then a caesium atom
whose velocity is parallel to the axis, Z, of a central hole will
interact with the mode for a time duration of ~10 yus.
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Figure 3. (a) The transmission of the cavity as a function of drive
strength—measured in intracavity photon numbers for a resonant
and empty cavity—calculated from equation (2) (black line) and
from equation (3) (points). The empty cavity transmission is shown
as a dashed red line. (b) The difference in output—during the
expected 10 pus of atom—cavity interaction—between a cavity with
one atom and an empty cavity. The detunings are

[A,0]/27 = [10, 10] GHz.

4. Single-atom detectability

To investigate the PBG cavity’s response to a strongly coupled
atom falling through a central hole, we solve—using a two-
level atom—the semiclassical optical bistability equation for
a qualitative understanding of the interaction and the quantum
master equation to obtain a more quantitative description.
Although neither of these treatments fully encompasses the
complexity of the system, we presume that they are sufficient
for demonstrating the feasibility of the device for single-atom
detection. These calculations ignore the fact that gy and the
detunings are of the same order or much larger than both the
hyperfine ground-state and excited-state splittings, which for
caesium are 9.2 GHz and 151-251 MHz, respectively. In other
words, the atom—photon coupling is much stronger than the
coupling between the electron and nuclear spins. This is an
unusual situation and requires a full quantum calculation of the
atom—PBG cavity interaction that includes the full caesium D2
manifold of states. We are in the process of performing this
computation.

The optical bistability equation is a semiclassical
description of the transmission of a cavity containing
atoms [32],

X

2 2
2 o 24
[(1 + N0(1+(A/n)2+yz)> +i (x nNo(1+(A/n)2+,v2)) ]

2
In the above equation, x is the input field, E/,/mg, where
E is the amplitude of the driving field; y is the output field,
a/./mg, where « is the intracavity coherent state amplitude; A
is the atom—laser detuning; and 6 is the cavity—laser detuning.
The black curves in figures 3(a) and 4(a) show the solution to
equation (2) for [A, 8]/27 =[10, 10] GHz and [A, 0]/27 =
[10, 0] GHz, respectively. These two sets of detunings are
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Figure 4. (a) and (b) are the same as figures 3(a) and (b) except with
detunings of [A, 0]/2mw = [10, 0] GHz.

chosen to highlight different atom—cavity response regimes
where we expect to be able to detect single atoms. In both
plots, [go, k, v11/2m = [17 GHz, 4.4 GHz, 2.6 MHz]. The
horizontal dashed lines are the empty cavity transmissions.
Both semiclassical solutions show signs of bistability in the
region around one intracavity photon. Within the context
of the approximation of equation (2), figure 3(a) shows that
for 10 GHz detunings of the atom and cavity from the probe
laser, an excess of photons transmitted through the cavity—an
‘up-transit’—can be detected for a drive of a few intracavity
photons. Figure 4(a) shows that with the cavity on resonance
with the laser and the atom 10 GHz detuned, a deficit of
photons—a ‘down-transit’—can be detected for similar drive
strengths of a few intracavity photons.

The solutions to the unconditional master equation
paint a more accurate picture of the atom-—cavity system.
Under the two-level atom, electric dipole, and rotating-wave
approximations, the equation for the density matrix, p, of the
joint state of the atom and cavity is as follows:

—i A Pt aia
p = ?[HO, pl+y. Q26067 —676p — p66)

+kQapa’ —atap — pa'a), 3)
Hy =nhA6%6 +n0a’a +inE@" — a) + Hi, %)
Hiy = ingoy (7) [a'6 — 67a]. (5)

In this equation, & is the atomic lowering operator and a is the
cavity field annihilation operator. Along the axis of the central
cavity hole, the mode function, v/(z), closely approximates a
Gaussian of width ~225 nm, centred about the mid-point of
the ~170 nm thick cavity membrane. The steady-state density
operator, pss, as a function of various drive strengths, coupling
strengths, and detunings, is found by solving equation (3) with
pss = 0. Operator expectations are ((5) = Tr[ps (5]. The
expected cavity output in photons per detector integration time,
At, is

N = kAt{a'a), (6)

with noise fluctuations of variance
(AN =k Ar((afaata) — (@' a)?). (7

S559



B Lev et al

x10'
3T

1
T - .
DRI Y
= (a) .’ \\ 4
25 , 0.8
@ e, AL
T . N
3 21 R4 N o6
: ’ N P(t)
S ’ ~
215F o 04 04
s ’ N
L ~e |
‘feeoeoee® R0 000 o2
- ~
05l===" . . . . hET
[] 5 10 15 20 25
x 10"
6 T —— T T 1
e00o0e, L7 ~ g0
5 v N |
” (b) ° S N . 0.8
- A
R o,/ Se
Q ’ N 0.6
2 3F ‘. N ()
’
g e o 104
2 2r . N
e . . N
s L ° . N 02
- ®ee .o
olm==" . . . . 1=a.y
[} 5 10 15 20 25
transit time (us)

Figure 5. Simulated photon counts due to atoms transits through the
axis of the cavity’s central hole. Blue dots (left axis) are the photon
counts, and the green, dashed curve (right axis) is the Gaussian
variation of g(¢)/go = ¥ (z(t)) experienced by the atom during its
transit. Calculations are for detunings of

(a) [A,6]/27 = [10, 10] GHz and (b) [A, 6]/27 = [10, 0] GHz.

Note that instead of photon counting, heterodyne detection
may be used, in which case expectations of @ rather than a'a
are the relevant quantities. The results presented in figures 3—5
are qualitatively similar for the two cases.

The points in figures 3(a) and 4(a) represent N calculated
from solutions to equation (3) for various drive strengths and
for the same gy, x, and detunings as used in the semiclassical
calculation. These points do not extend past a drive strength
of 80 intracavity photons because our limited computational
resources necessitate the use of a truncated Fock basis. The
cavity transmission as a function of drive qualitatively follows
the semiclassical solutions; however, there is no longer a sign
of bistability, which is to be expected since the unconditional
master equation is linear in the state variables, p, and we plot
only (N). We also see that for a drive of 1-10 photons, up-
transits occur for a probe laser detuned 10 GHz from both the
atom and the cavity (figure 3(a)), and down-transits for a probe
laser and cavity 10 GHz detuned from the atom (figure 4(a)).
Figures 3(b) and 4(b) show the change in the output of the
cavity—using the master equation solutions—during the 10 us
in which we expect the atom to interact with the cavity mode.
The black dots show the up-transits and blue triangles the
down-transits. For drive powers of ~1 nW (1-10 intracavity
photons), photon excesses of 103-10° can be seen in the up-
transits of the [A, 6]/2n = [10, 10] GHz case (figure 3(b)),
and photon deficits of 10°—~10° in the down-transits of the
[A,0]/2r = [10,0] GHz case (figure 4(b)). For both sets
of detunings, we see that for drive strengths less (greater) than
one intracavity photon, there are super- (sub-) Poissonian noise
fluctuations of the photon number. Plots of the Q-function [33]
in the sub-Poissonian regions show excess spread—and even
a bifurcation in the [A, 0]/27 = [10, 0] GHz case—of the
phase quadrature corresponding to photon number squeezing.

Simulated photon counts during atom transits are shown
in figures 5(a) and (b). We assume that the atom moves with
constant velocity, v = 2.5 cm s~1, through the axis of the
cavity mode ¥ (z), making a full transit of the Gaussian waist
in 10 us. In both plots the drive strength is two intracavity
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photons. As the atom transverses the cavity, the coupling
g(t) = goy(vt) also varies as a Gaussian, which modulates
the output photon flux. The mean photon count, N, and
variance, (AN)?, are found by solving for p for each g(r)
in time steps of At = 1 us, chosen to simulate a finite
bandwidth photodetector. Each point includes additional shot
noise selected randomly from a normal distribution of standard
deviation AN. Figures 5(a) and (b) show that even with shot
noise, up- and down-transits of single atoms through the axis of
the central PGB cavity hole are clearly detectable. Moreover,
it seems possible to detect atom transits that only experience
20%-30% of go. During an experiment, we expect to detect a
low background of signals from marginally coupled atoms—
such as those grazing the field extending from the surface
of the PBG membrane or slipping into holes away from the
central region—punctuated by sharp pikes representing atoms
fully coupled to the field inside the central holes. It should be
noted that the mean photon numbers and noise in figures 5(a)
and (b) are not derived from a quantum trajectory calculated
from the conditional master equation [34], but are simply
calculated using pg from the unconditional equation (3). This
is acceptable given the inherent limitations of the model as
mentioned at the beginning of this section.
The atom will experience a force,

(f) = —invegiate —as'), )

as it encounters the cavity mode. The maximum acceleration
on an atom dragged though the cavity mode at velocity
2.5 cm s~ '—for either of the sets of detunings used above—is
[{ fmax)|/Mcs = 2.4 x 108 m s~2, corresponding to a change
in velocity of

[far) B2
MCs

Av = 5ms™! &)

over half the length of the cavity mode, Az = 100 nm. In
the above equations, My is the mass of a caesium atom. This
agrees with a simple estimate using

higo = 0.5Mcg(Av)?, (10)

which yields Av = 10 ms~!. Fabry—Perot experiments
have detected effects of the cavity interaction on the atomic
motion [35]. The simple estimate using equation (10) gives
a smaller value of Av ~ 0.7 ms~' for the Fabry—Perot
experiments, implying that the motion of the atom traversing
the mode of the PBG cavity will also be significantly affected.
A more detailed calculation [36] of the force and momentum
diffusion using a master equation beyond the two-level atom
approximation is necessary to make predictions about the
behaviour of an atom in an attractive, red-detuned cavity mode
or in a repulsive, blue-detuned mode. The close proximity
of the atom to the sides of the PGB cavity’s holes will
surely affect the system’s dynamics due to the Casimir—Polder
potential [29], and this will need to be addressed in more
detailed simulations.

5. Conclusion

The integration of atom trapping and cooling with photonic
bandgap cavities on a chip introduces a robust and scalable
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cavity QED system to the toolbox of nanotechnology. A device
allowing cooled neutral atoms to be delivered via a magnetic
microtrap and waveguide to the mode of a graded lattice PBG
cavity is feasible given present technology. Calculations using
the semiclassical optical bistability equation and the uncondi-
tional master equation indicate that it will be possible to detect
single strongly coupled atoms with this atom—cavity chip.
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