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Abstract. Ultracold dipolar Fermi gases represent relatively unexplored,
strongly correlated systems arising from long-range and anisotropic interactions.
We demonstrate the possibility of a spontaneous symmetry breaking biaxial
phase in these systems, which may be realized in, e.g., gases of ultracold polar
molecules or strongly magnetic atoms. This biaxial nematic phase is manifest
in a spontaneous distortion of the Fermi surface perpendicular to the axis of
polarization. We describe these dipolar interaction induced phases using Landau
Fermi liquid theory.

Recent experimental advances toward the creation of degenerate fermionic rovibronic ground
state polar molecules, such as 40K87Rb [1], and highly magnetic fermionic atoms, such as
53Cr [2, 3], 167Er [4] and 161Dy or 163Dy, present new avenues for realizing states of strongly
correlated matter in ultracold atomic and molecular systems. A degenerate dipolar Fermi gas
(DDFG) is more strongly coupled and has longer range interactions than other (neutral) atomic
systems, and it is therefore reasonable to expect that these systems will exhibit novel and exotic
behaviors. Recent theoretical studies have already explored Bardeen–Cooper–Schrieffer-like
superfluidity in DDFG systems (see ref. [5] and references therein).

We explore the possible occurrence in homogeneously trapped DDFGs of quantum nematic
phases; phenomena heretofore only observed in strongly correlated electronic systems [6]–[8]
and which have been shown to occur in models based on the breakdown of Fermi liquid (FL)
theory at a Pomeranchuk instability [9] as well as in lattice models [10, 11]. In a nematic state,
the simplest example of quantum liquid crystal (QLC) order [12], the fermionic gas becomes
spontaneously anisotropic—without the action of an external field—while maintaining overall
homogeneity. Other inhomogeneous QLC phases, such as the smectic (stripe) phase, are both
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possible and likely to occur in the strong dipolar coupling regime, though are not considered
here. QLC phases may also occur in highly magnetic atomic systems in optical lattices [13] and
in population unbalanced Fermi gases [14].

We show in this work that a quantum nematic phase is possible in sufficiently strongly
coupled, homogeneously trapped DDFGs. More specifically, we consider DDFGs in a fixed
external polarizing field pointing along the z-axis. We consider an infinite and homogeneous
three-dimensional (3D) system in which the fermionic atoms or molecules interact via the
dipolar interaction that, unlike r−6 contact interactions, has a long-range falloff ∝ r−3. In the
presence of a polarizing field, the interaction itself becomes anisotropic in real space with a
d-wave symmetry; the dipole–dipole interaction (DDI) is repulsive or attractive depending on
the spatial configuration of dipoles. Since the DDI is explicitly anisotropic, the Hamiltonian
(and ground state) of the uniformly polarized DDFG must have an explicitly broken rotational
invariance, with the polarizing field providing the preferred axis. Nevertheless, the Hamiltonian
is invariant under rotations about this fixed axis, and it is this remaining symmetry that is
spontaneously broken in the biaxial nematic phase.

While DDFGs with interactions in the particle–particle channel have been previously
studied [5], [15]–[17], the particle–hole (density) channel is relatively unexplored [18]. In the
case of fermionic dipoles aligned by an external field, the explicit broken symmetry of the
DDI causes the coupling of even and odd orbital angular momentum channels [19]. More
significantly for QLC physics, we show that an important feature of the DDI in 3D is the
presence of an effective attractive particle–hole interaction in the d-wave angular momentum
channels, which triggers a Pomeranchuk instability leading to a nematic phase of the FL. While
these phases are difficult to observe and study in electronic systems, ultracold DDFGs provide
clean, experimentally realizable systems whose interaction strengths in the, e.g., `= 0 and
`= 2, angular momentum channels can be comparable by changing external parameters such
as the polarizing field and trap aspect ratio.

We now apply Landau FL theory to explore the particle–hole channel instabilities of a
DDFG, and in doing so, reveal the possibility for observing a nematic state in the form of a
spontaneous xy-symmetry breaking. The starting point of the Landau FL theory is the existence
of a Fermi surface (FS) representing the ground state of the FL in the absence of quasi-particle
excitations [20]. In an FL, fermionic quasi-particles have residual interactions in the forward
scattering channel parametrized by a set of coupling constants, the Landau parameters of the FL.
In a 3D system, such interactions can occur in any angular momentum channel. This standard
picture is known to be a valid description for interacting Fermi systems such as 3He and most
metals.

The order parameter of a nematic state is a traceless symmetric tensor [21]. In a 3D
interacting Fermi system, such as the DDFG, we can form a nematic order parameter as a
bilinear of the Fermi fields, Qi j =

1
k2

F
ψ†( Ex)(∂i∂ j −

1
3∇

2δi j)ψ( Ex), which is both symmetric and

traceless [9]. Here, i, j = x, y, z and ψ( Ex) is the second quantized fermion operator at position
Ex . The 3 × 3 symmetric tensor Qi j has two independent eigenvalues, Q1 and Q2. If Q1 = Q2,
then the nematic state is uniaxial; otherwise it is biaxial. Since the Hamiltonian of the polarized
DDFG has an explicitly broken rotational invariance (due to the polarizing field), Qi j 6= 0 in a
uniaxial state. In this case, the FS of the gas is not spherically symmetric but must instead have
(at least) a uniaxial distortion: the FS is an ellipsoid oriented along the direction of polarization.
In a uniformly polarized DDFG, polarization effects enter only through the anisotropy of the
resulting interaction. Hence, the uniaxial distortion of the FS must be a (generally monotonic)
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function of the polarization. Indeed, Hartree–Fock (variational) calculations [18]—accurate in
the weak coupling regime—reveal this uniaxial FS distortion of a polarized DDFG.

Since the FS distortions are described by particle–hole condensation in specific angular
momentum channels, the general tensor order parameter Qi j can be recast in terms of its angular
momentum components u`,m , related to the fermion occupation numbers by

u`,m =
1

V

∑
k

Y`,m(k̂)〈c
†
Ek
cEk〉, (1)

where cEk is the Fourier transform of the Fermi field ψ( Ex), ` > 0 and |m|6 `; Y`,m(k̂) are the
familiar spherical harmonics. Each order parameter u`,m measures a distortion mode of the
FS. Among them, u2,0 and u2,2 = u∗

2,−2 are of main interest, as they are order parameters for a
uniaxial and biaxial nematic phase, respectively: |u2,0| ∝ (Q1 + Q2)/2 and |u2,2| ∝ |Q1 − Q2|.
More generally, equation (1) represents moments of the Fermi–Dirac momentum distribution
function that is anisotropic in these nematic phases. As a consequence, in a trapped system,
the density profile will distort—an effect, for the uniaxial case, seen in the bosonic dipolar
condensates [22].

Unlike the uniaxial state, which is present in a uniformly polarized DDFG for all polarizing
fields, the biaxial state is accessible only for fields of sufficient magnitude. Whether or not this
phase exists in a given dipolar gas depends sensitively on the particular Landau parameters,
which is reliably calculated numerically (by intensive quantum Monte Carlo simulations) or
analytically in the weak dipole limit. The latter is defined by the condition that the dimensionless
coupling constant λ= nd2/εF is small, where n is the particle density, d is the electric or
magnetic dipole moment, and εF = h̄2(6π 2n)2/3/2m is the Fermi energy of the undistorted FS.
The Fermi temperature TF is εF = kBTF. Our mean field analysis predicts that a biaxial phase
may arise in DDFGs for λ∼ 1.

The quantum phase transition to the biaxial nematic state is very similar to the theory of
the ferromagnetic Stoner transition in metals described by the Landau theory of the FL [23].
In both cases there is a (Pomeranchuk) instability at some finite value of the coupling constant
which for the case of the ferromagnetic metal is the s-wave triplet Landau parameter, and for
the biaxial dipolar nematic is the `= 2, m = ±2, singlet Landau parameter we discuss here. In
both theories it is assumed that no other phase transition occurs before the nematic transition1.

Consider a uniformly polarized DDFG described by the Hamiltonian:

H =

∑
Ek

ε(Ek)c†
Ek
cEk +

1

2

∑
Ek,Ek′,Eq

f (Eq) c†
Ek−Eq

cEkc†
Ek′+Eq

cEk′, (2)

where f (Eq)=
4πd2

3 (3 cos2 θq − 1) is the DDI in momentum space and θq is the angle between
Eq and ẑ. Within the mean field (Hartree–Fock) approach, the Hartree term (Eq = 0) does
not contribute, since the average of f (Eq) over a 4π solid angle is zero. The Fock term
(Eq = Ek − Ek ′) can be expanded into angular momentum channels once the magnitudes of Ek
and Ek ′are set to the Fermi wavevector kF (a good approximation in the low energy theory of a

1 In the variational calculation of Miyakawa et al [18], a Pomeranchuk instability is found in the singlet s-wave
channel at a dimensionless dipolar coupling also of order unity, λ∼ 1. This s-wave transition, which signals a
‘collapse’ instability (or ‘phase separation’) may be pushed past the critical dipolar strength λc by the isotropic
interaction that is always present in all atomic and molecular systems but which is often ignored in studies of
dipolar gases.
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Landau FL [9]):

f (Ek − Ek ′)= −

∑
`,m;`′,m′

f`,m;`′,m′Y ∗

`,m(k̂)Y`′,m′(k̂ ′). (3)

The minus sign originates in the Fock term. The dimensionless coupling constants of this
expansion, F`,m;`′,m′ = F`′,m′;`,m = N (0) f`,m;`′,m′ are the generalized Landau parameters, where
N (0) is the density of states at the FS. Because the rotational symmetry is broken by the
polarization, Landau parameters F`,m;`′,m′ that mix different angular momentum channels enter
in the Hamiltonian. For the DDI, the non-vanishing Landau parameters are

F`,m;`,m = (−1)m
6π(`2 + `− 3m2)

`(4`3 + 8`2 + `− 3)
λ, (4)

F`+2,m;`,m = (−1)m+1 3π

2`3 + 9`2 + 13`+ 6
λ

√
[(`+ 1)2 − m2][(`+ 2)2 − m2]

4`2 + 12`+ 5
. (5)

More generally, the F`,m;`′,m′ will be renormalized by interactions beyond the DDI, such as the
contact interaction, but rotational symmetry and space-inversion (or time-reversal) symmetry of
the system enforce the selection rules m = m ′ and `− `′

= even integers.
We now derive the free energy F[{u`,m}] in order to show that there is a phase transition

to a biaxial state. In the sprit of the Landau theory of phase transitions, we expand F[{u`,m}] in
powers of the order parameters {u`,m}. This procedure is accurate if the FS distortion is small.
Since the uniaxial distortion—parametrized by the order parameters u2n,0—is present for all
values of λ, this expansion is quantitatively accurate only for λ� 1, although it is qualitatively
reasonable even for λ' 1. Additionally, the expansion in powers of the biaxial order parameters
u2n,m (m 6= 0) is accurate near the critical value λc for the phase transition to the biaxial state. A
perturbative (Hartree–Fock) calculation of the self-energy of a DDFG at T = 0 yields a fermion
self-energy of6HF(Ek)= σ(|k|)P2(cos θk), where σ(|k|) > 0 is a monotonic function of |Ek|. This
result is consistent with equation (1) and implies that the FS is stretched along the z-direction
with the symmetry `= 2 for any finite λ.

To determine the structure of the free energy while keeping all order parameters obfuscates
the essential physics. We work instead with a truncated, though sufficient, set of modes: the
uniaxial order parameters u2,0 and u4,0, and the biaxial order parameters u2,±2 = u∗

2,∓2, which
can be represented in terms of an amplitude |u2,2| and an (arbitrary) phase ϕ2.

The free-energy density of the uniaxial state, at fixed particle density and in mean-field
theory up to quadratic order in u2,0, has the form:

F

V
=

n

N (0)
h2u2,0 +

1

N (0)
m2u2

2,0 + O(u4
2,0), (6)

where F is the free energy, V is the volume of the system and N (0) is the density of states at
Fermi level. In equation (6), the term linear in u2,0 arises from the mixing between u0,0 (i.e. the
particle density n) and u2,0, and exists because F2,0;0,0 6= 0 due to the anisotropic nature of the
interaction. For T � TF and weak coupling O(λ3), the dimensionless constants h2 and m2 are

h2 = −
2π 2

7
√

5

(
1 −

π 2T 2

24T 2
F

)
λ2 + O(λ3),

(7)

m2 =
2π

7
λ+

3π 2

35

(
1 −

π2T 2

24T 2
F

)
λ2 + O(λ3),
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with similar (but smaller) coefficients for u4,0 and higher channels, including the mixing
terms with u2,0. Within this approach, a ‘meta-nematic’ first order transition [13, 24] (i.e. a
discontinuous jump in the uniaxial distortion u2,0 driven by λ) does not occur in a 3D DDFG
since m2 > 0.2

By minimizing the free energy of equation (6), the expectation value of u2,0 (up to O(λ2)

and T � TF) is

u2,0

n
=

π
√

5

(
1 −

π 2T 2

24T 2
F

)
λ+ O(λ2). (8)

Hence, the FS has a uniaxial distortion in the d-wave channel (2, 0) as well as in higher
even angular momentum channels, e.g. (4, 0). For both Dy and KRb, the distortions in
higher angular momentum channels are small, e.g. |u4,0|/|u2,0| ∼ 10−2. We used a variational
wavefunction, of the type used by Miyakawa et al [18], to compute numerically the temperature-
dependence of u2,0 and u4,0 and found it to be monotonically decreasing function of T . The same
computation also shows that the ratio |u2,0|/|u4,0| remains very small even up to λ∼ 1, where
|u2,0|/|u4,0|.

1
5 . One consequence of the smallness of |u4,0| is that a density wave transition is

unlikely to occur for λ∼ 1 as the curvature of the FS is still too large for a near-nesting condition
to become reachable (although it may happen at larger values of λ).

We now demonstrate the existence of a phase transition to a biaxial nematic state above a
critical value of the coupling constant λc. The leading instability to the FS occurs in the u2,±2

channels, which possess free-energy densities of

F

V
=1|u2,2|

2 + g|u2,2|
4 (9)

and is independent of the phase ϕ2 as expected by the xy azimuthal symmetry. In a small λ
expansion and for T � TF, the coefficients 1 and g are

1=

√
2π3h̄3

7m3/2√εF
λ

[
1 −

7πλ

24

(
1 −

π 2 T 2

24T 2
F

)]
,

(10)

g =
761π 10h̄9

254592
√

2m9/2ε
7/2
F

(
1 +

1571π2 T 2

3044T 2
F

)
λ4,

where m is the (effective) mass of the fermions. We only include the leading order contributions
to 1 and neglect quantitatively important effects due to, e.g., mixing between different angular
momentum channels such as (2, 0) and (2, 2). Extending the present order of approximation
requires either extensive numerical computations or the extrapolation of a longer series
expansion.3

The sign of 1 dictates two different phases. For 1> 0, the FL phase with an uniaxial
distortion (u2,0) is stable and u2,±2 = 0. For 1< 0, the system is in a biaxial nematic phase
with |u2,2| =

√
|1|/2g. For λ < λc(T ) and 1> 0, the uniaxial nematic phase discussed above

is stable. For λ > λc(T ) (stronger DDI), the free energy of equation (9) predicts a biaxial phase.

2 Anisotropic confinement of the gas may enhance the effective strength of the attractive interactions, leading
perhaps to such a first-order transition.
3 We note that a variational calculation along the lines of [25] does not predict a uniaxial–biaxial transition in
that the effective value of 1 remains positive, although small. Presumably, a computation of renormalized Landau
parameters within the variational approach would allow a description of the transition.
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T/TF

λλc

Uniaxial Biaxial

Figure 1. The uniaxial–biaxial phase transition; λc '
24
7π .

The uniaxial–biaxial phase boundary, shown in figure 1, is T/TF = (2
√

6/π)
√

1 − λc/λ, where
we estimate the QCP at λc ' 24/7π . The actual value of λc may be larger than the mean
field value predicted above due to, e.g., quantum fluctuations. Nevertheless, signatures of this
phenomenon could be within range of current experimental investigations.

While the largest magnetic moment among the atoms (specifically, Dy and Tb with
10 µB) provides a λDy = 0.006 at n = 1013 cm−3, the fermionic polar molecule KRb, which
has recently been laser cooled to near degeneracy, possesses a ground state electric dipole
moment of 0.57 D [1]. This yields realizable λs of magnitude [λKRb, λDy] = [0.17, 0.006] at
n = 1013 cm−3. A more interesting case is that of fermionic LiCs, which would possess the large
dipole moment of ∼5.5 D [26] and a λLiCs ∼ 18 for similar densities. Other inhomogeneous
phases may occur for such large values of λ. Despite rapid progress in cooling bosonic LiCs to
its rovibronic ground state [27], fermionic LiCs is relatively unexplored to date. Confinement
would not substantially modify the formation of a biaxial state unless the trap is highly
anisotropic. Inhomogeneous effects in a harmonic trap induce growth of biaxial state formation
from the center outward.

It is well known [28] that 3D mean field theory fails to predict the correct critical behavior
even though it yields a good qualitative picture. Further studies using large-scale numerical
simulations will be needed to refine this picture. In particular, mean field theory does reveal
that the biaxial state manifests itself as an FS distortion along two orthogonal axes, with the
in-plane distortion given by |u2,2| and it spontaneously breaks the SO(2) rotational symmetry
of the system (up to in-plane rotations by π ). In the case of a DDFG confined in a very large and
isotropic trap, the correct universality class of the thermal uniaxial–biaxial transition we discuss
here is the 3D classical XY model. Like all nematics, the broken symmetry is not internal but
the symmetry of spatial rotation [29] with a fixed axis4. Unlike the classical XY model—which
involves an internal symmetry—the topological defects of this biaxial phase are disclination
lines that cannot form closed loops because of the presence of the polarization field. Although
this effect does not change the critical behavior in 3D, it does affect the behavior of the biaxial
state.

The uniaxial phase is essentially an FL state with well-defined quasi-particles and an
explicit static spatial anisotropy. The Fermi velocity and the speed of (zero) sound vary along
the ‘meridians’ of the FS, as can be determined directly from the uniaxial distortion. We have

4 There have been several recent model studies of (uniaxial and biaxial) spin nematic phases in ultracold atoms.
A spin nematic is a homogeneous state that is isotropic in real space but anisotropic in the internal spin space (see,
for instance, the work of Diener and Ho [30] and references therein). It should not be confused with the nematic
states that we discuss here which affect only the ‘orbital’ degrees of freedom.
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studied the collective modes in both phases and at the phase transition. In addition to zero sound
(an s-wave collective mode), the uniaxial phase has three quadrupolar collective excitations, one
with L z = 0 and two with L z = ±2. The L z = 0 mode mixes with the zero sound as a result of
the explicit anisotropy.

As the phase transition to the biaxial state is approached, much as in the 2D nematic
state [9], the in-plane quadrupolar collective modes become gapless and overdamped, but only
when propagating in the basal xy-plane. This becomes a Goldstone mode in the biaxial phase
but remains gapped when propagating off-plane. This behavior is expected since this biaxial
state develops in the presence of an external symmetry breaking field: the only spontaneously
broken symmetry occurs in the rotations about the direction of polarization. In contrast, a full
biaxial nematic should have two gapless Goldstone modes as it has two spontaneously broken
continuous symmetries [21].

Beyond employing destructive density measurements via light absorption to measure FS
distortions, we suggest the use of polarized light scattering [21] to detect the collective behavior
of DDFGs, since in the biaxial nematic state the DDFG behaves as a birefringent medium for
light propagation. While this is a conceptually natural and direct way to access the collective
mode spectrum of the nematic phase, experimentally it may be challenging to perform without
destroying the nematic state. In particular, only small scattering signals may be present due
to the need for limiting the atomic excited state population while interrogating the small
trap population. An alternative method would involve measuring the anisotropy of scattering
Bragg peaks; structure factors of non-dipolar Fermi gases were recently measured using Bragg
spectroscopy (see [31] and citations within).

Nematic Fermi fluids—in the absence of a background lattice or at quantum criticality—are
a striking example of a ‘non-FL’, in the sense that the quasi-particles are generally broad and
poorly defined [9, 32]. However, in the case of this biaxial state, the quasi-particles become
broad and non-FL-like only when they propagate in-plane due to the polarizing field. An
exciting issue is the possibility for realizing a true biaxial nematic, which would exhibit exotic
defects known as non-Abelian disclination lines [33]. Such defects involve twisting polarization
and have skyrmionic structure.

In the context of a DDFG, a biaxial necessarily requires that the polarization be regarded
as an order parameter, i.e. ferromagnetism. Thus, the biaxial phase of a DDFG is more complex
than in conventional liquid crystals. In the absence of a ferromagnetic phase of 3D DDFGs,
a true biaxial phase may appear as a metastable state obtained by turning off the external
polarization field. Homogeneously trapped DDFGs are thus a natural setting to investigate
the possible existence of QLC phases in Fermi fluids and will provide a fertile ground for
explorations in non-FL physics.
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