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We describe simulations of the quantum dynamics of a confocal cavity QED system that realizes an
intrinsically driven-dissipative spin glass. A close connection between open quantum dynamics and replica
symmetry breaking is established, in which individual quantum trajectories are the replicas. We observe
that entanglement plays an important role in the emergence of replica symmetry breaking in a fully
connected, frustrated spin network of up to 15 spin-1=2 particles. Quantum trajectories of entangled spins
reach steady-state spin configurations of lower energy than that of semiclassical trajectories. Cavity
emission allows monitoring of the continuous stochastic evolution of spin configurations, while backaction
from this projects entangled states into states of broken Ising and replica symmetry. The emergence of spin
glass order manifests itself through the simultaneous absence of magnetization and the presence of
nontrivial spin overlap density distributions among replicas. Moreover, these overlaps reveal incipient
ultrametric order, in line with the Parisi replica symmetry breaking solution for the Sherrington-Kirkpatrick
model. A nonthermal Parisi order parameter distribution, however, highlights the driven-dissipative nature
of this quantum optical spin glass. This practicable system could serve as a test bed for exploring how
quantum effects enrich the physics of spin glasses.
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I. INTRODUCTION

In a spin glass, quenched disorder and the resulting
frustration of spin-spin interactions generate a rugged free-
energy landscape with many minima. This means that in
some cases, below a critical temperature, the single para-
magnetic thermodynamic state fractures into a multitude of
distinct possible thermodynamic states [1]. The number of
such states is exponential in the system size. A conse-
quence of this is that exact copies—replicas—of such a
system may cool into distinct thermodynamic states. This is
replica symmetry breaking (RSB), which Parisi invoked
[2,3] to solve the Sherrington-Kirkpatrick (SK) model [4].
The SK model describes a network of spins with all-to-all
couplings with random signs. The Parisi solution showed

how RSB arises by studying the distribution of spin
overlaps between different replicas, as captured by the
Parisi order parameter and the ultrametric, clustered treelike
structure of the distances between replicas. Since these
features depend on details of the different thermodynamic
states, they cannot be identified purely by looking at
averaged properties [5].
Replica symmetry breaking is one example of the idea of

ergodicity breaking. In an ergodic system, the dynamics of
the system explores all allowed states, such that time
averages are equivalent to configuration-space averages;
this equivalence between time and configuration averages
fails in states with RSB. This has important consequences
when considering the relation between individual quantum
trajectories of the system and the trajectory-averaged
density matrix. Theoretically, studying individual trajecto-
ries corresponds to stochastic unraveling of the density
matrix equation of motion [6–8]. Physically, unraveling the
dynamics into trajectories corresponds to treating the
system-environment interaction as a generalized measure-
ment of the system by the environment. Each measurement
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projects the system into a specific state, conditional on the
measurement outcome. The sequence of measurement
outcomes (and associated states) is called a quantum
trajectory.
We show that quantum trajectories can act as replicas to

directly probe RSB. To see this link, we first discuss a
simpler case, that of symmetry breaking in a standard
second-order phase transition. When a perfectly isolated
quantum system undergoes spontaneous symmetry break-
ing, it enters a macroscopic superposition, or “cat state,” of
the symmetry-broken states. This cat state is extremely
fragile: Any interaction between the system and the envi-
ronment allows the environment to learn which state the
system chose. Backaction from measuring the environment
stochastically collapses the system into one of the sym-
metry-broken states. Thus, each run of the experiment yields
a symmetry-broken state, although the ensemble of states,
averaged over experimental runs, remains symmetric.
The above simple picture also extends to the case where,

rather than a small number of symmetry-broken states, one
has many complex ergodicity-breaking patterns, as in a spin
glass. In the case of a cavity QED system, each thermo-
dynamic state emits a characteristic pattern of photons into
the environment. On each run of the experiment, the
backaction from observing this field collapses the system
into a distinct thermodynamic state. This corresponds to the
notion of a “weak” symmetry that is broken in individual
experimental runs but not in the ensemble-averaged density
matrix [9]. Thus, because there is a one-to-one correspon-
dence between thermodynamic states and emission pat-
terns, the overlap distribution is accessible through the
correlations between the photon measurement records on
distinct runs of the experiment.
We investigate the emergence of RSB in the open

quantum system dynamics of confocal cavity QED, an
experimentally practicable setting [10–13]. In this system,
atoms represent individual spins, while the cavity provides
an all-to-all but sign-changing random interaction, depen-
dent on the position of the atoms. This position dependence
means it is possible to achieve random but repeatable
interactions by controlling the placement of the atoms. By
monitoring the spatiotemporal correlations of the light
leaking out of the cavity, one can reconstruct the dynamics
along individual trajectories. Because monitoring provides
access to these correlations, the cavity QED setting gives us
a powerful way to study RSB. In the RSB phase, the
dynamics along each trajectory reaches a specific non-
ergodic state, so the spin configuration (and hence that of
the emitted light) is stable over time on that trajectory. We
quantify the distribution of overlaps among the patterns
from different trajectories and the resulting Parisi order
parameter. Together these show the distinctive features
predicted by the Parisi ansatz for the SK spin glass.
We consider a realization where spins correspond to

single atoms, giving spin-1=2 (and thus quantum) degrees

of freedom, allowing entanglement to play a role in the
emergent spin organization. We show that the quantum
dynamics are distinct from the semiclassical limit, in which
a semiclassical energy barrier severely inhibits passage
to a low-energy manifold of states. By transitioning via
entangled states, the trajectory avoids semiclassical energy
barriers that would otherwise bar access to the low-energy
spin manifold where RSB occurs.
Previously, we considered this same setup, but in the

limit far above threshold where semiclassical approaches
are valid, and considered the process of memory recall in
such a device [14]. Here, we address a very different
question, focusing on the (necessarily) quantum dynamics
near threshold, and the resulting distribution of low-energy
states found. A key point of this paper is that the final states
at the end of the pumping sequence are classical, yet the
ability to recover them relies on quantum dynamics.
The theoretical possibility of a spin glass phase in

a multimode cavity QED system was suggested in
Refs. [15–17]. We note that the driven-dissipative nature
of the confocal cavity QED quantum spin glass dis-
cussed differs from previous theoretical investigations of
transverse SKmodels in the closed-system context [18–22].
Experimental observations of RSB in physical settings have
been reported in the spectra of semiclassical systems such as
random lasers [23,24] and nonlinear wave propagation [25].
Recent experimental results indicate that RSB in a confocal
cavity QED system has been realized using a network with
many XY spins per node [13]. Recent theoretical work
has noted that there can be phase transitions in the entan-
glement and correlations along individual quantum trajec-
tories [26,27], even when such transitions are absent in the
trajectory-averaged density matrix [28].
The paper is organized as follows. Section II describes

the physical system we aim to simulate, its model
Hamiltonian, and the Lindbladian dynamics to be unrav-
eled by the trajectory simulations. Section III presents the
quantum trajectory simulation method we employ, fol-
lowed by results from individual trajectories in Sec. IV.
Also discussed in Sec. IVare the evolution of entanglement
entropy per spin and the difference in the lowest reachable
configuration energy between entangled and semiclassical
trajectories. The connection between quantum trajectories
and replicas is presented in Sec. V. Evidence for RSB using
the spin overlap order parameter is shown in Sec. VI.
Section VII discusses the nonequilibrium nature of the
system’s overlap distribution via comparisons to equilib-
rium distributions. Section VIII provides evidence for spin
glass, ferromagnetic, and paramagnetic phases. The emer-
gence of an ultrametric structure between replicas is
presented in Sec. IX. A summary and discussion of broader
implications are in Sec. X. Eight appendixes provide
information on the form of the effective spin connectivity
matrices in confocal cavity QED (Appendix A), the
derivation of the semiclassical critical coupling strength
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(Appendix B), the derivation of the atom-only theory
(Appendix C), the stochastic unraveling of the master
equation (Appendix D), the semiclassical limit of the spin
dynamics (Appendix E), the Parisi distribution in terms of
quantum trajectories (Appendix F), error bar estimation via
bootstrap analysis (Appendix G), and the full set of overlap
distributions used in forming the Parisi overlap order
parameter (Appendix H).

II. CONFOCAL CAVITY QED SPIN SYSTEM

We now provide a description of a practicable system
upon which we base this numerical study. All parameters
have been experimentally realized or are plausible using
existing technology [29]. Photon-mediated spin inter-
actions in the confocal cavity QED system were previously
discussed in Ref. [14] and experimentally explored in
Refs. [11,13,30]. The system is depicted in Fig. 1. Two
transversely orientated lasers of pump strength Ω� scatter
photons off a network of N spin ensembles, each with M
spins per ensemble, where M can vary between one
(realizing the spin-1=2 quantum limit) and 105 (describing
current experiments [10,11,13,29,30]); see Sec. X and
Ref. [31] for description of a practicable spin-1=2 scheme.
These experiments employ 87Rb in a 1-cm-long confocal
cavity. To realize the network, each spin may be trapped at a
position ri in the midplane of the cavity using an array of
optical tweezers [32] (or optical dipole traps of larger
waist [11,13]).
Similar to recent experimental work in which spins

couple to a transversely pumped cavity [33–35], the
(pseudo)spin states considered here correspond to
87Rb hyperfine states j↓i ¼ jF ¼ 1; mF ¼ −1i and j↑i ¼
jF ¼ 2; mF ¼ −2i. The two pumps scatter light into the
cavity via Raman transitions [36]. We will consider an
atomic detuning of Δ� ≈ −2π × 100 GHz from the 52P3=2

atomic excited state and a controllable two-photon detun-
ing ωz ≈ 2π × 10 kHz. The maximum single-atom, single-
mode light-matter coupling strength can reach a magnitude
of g0 ¼ 2π × 1.5 MHz; see Sec. X for more details. We
consider a confocal cavity of even symmetry under
reflection in the cavity center axis [37]. This restricts the
possible cavity modes to the set of Hermite-Gauss TEMlm
modes with indices lþm ¼ 0 mod 2 [30]. An even con-
focal cavity retains modes of sine and cosine longitudinal
character, and trapping the atoms in one of these two
longitudinal quadratures with optical tweezers further
restricts the set of participating modes to lþm¼0mod4.
This results in the effective Ising coupling we consider
here; see Ref. [14] and Appendix C. We denote the
remaining mode functions by ΞμðrÞ, indexed by μ for
brevity. A total of Nm modes participate in the near-
degenerate family of confocal-cavity modes to which the
atoms couple [38]. The modes are detuned from the mean
pump frequency by Δμ ¼ ωp − ωμ ≈ −2π × 80 MHz.

The Hamiltonian in the rotating frame of the pump, after
adiabatic elimination of the atomic excited state, is a
multimode Hepp-Lieb-Dicke model [39–41]:

H0 ¼ −
X
μ

Δμa
†
μaμ þ ωz

XN
i¼1

Szi

þ g
X
μ

XN
i¼1

ΞμðriÞSxi ða†μ þ aμÞ: ð1Þ

The cavity modes are described by the bosonic operators
aμ, while the spin ensembles are described by the collective

spin operators Sx=y=zi to facilitate generalization to the

M > 1 case. In the spin-1=2 limit, Sx=y=zi ¼ σx=y=zi =2.

FIG. 1. (a) Sketch of the confocal cavity QED system. Trans-
verse pump lasers (red) illuminate a network of atomic spin
ensembles (orange) and scatter light into the cavity. The atomic
spin ensembles at each node create either a collective spin or an
effective spin-1=2 via Rydberg blockade. Either way, the atomic
spin ensembles are held in place by optical dipole “tweezer”
lasers (not shown). The confocal cavity field is composed of a
local field (blue) at each spin ensemble and a nonlocal field
(green) that mediates interactions between spin ensembles. The
spin states are read out by imaging the cavity emission on a
camera via spatial heterodyne detection [11]. (b) Example
simulated detection traces of integrated cavity emission for five
spins. For clarity, the y axis is normalized to the maximum signal
magnitude after 4 ms. Each spin organizes into one of two
orientations above the semiclassical superradiant threshold, in-
dicated by a dashed line. (c) Plot of the ramp schedules versus
time. Normal (N) and superradiant (SR) regimes are to either side
of the semiclassical threshold (dashed vertical line). (d) Pumping
scheme for a 87Rb atom. Balanced Raman transitions realize a
pseudospin-1=2 degree of freedom. See text for details.
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The effective coupling strength g ¼ ffiffiffi
3

p
g0Ω�=12Δ� is the

same for each pump laser, which can be achieved by
controlling their pump intensities [14,33,34]. Dissipation of
the field of each cavity mode is incorporated using the
Lindblad master equation ρ̇ ¼ −i½H0; ρ� þ κ

P
Nm
μ D½aμ�,

where D½a� ¼ 2aρa† − fa†a; ρg. We consider a uni-
form cavity loss rate κ ¼ 2π × 260 kHz, similar to recent
experiments [29].
The cavity-mediated interaction Jij between spin ensem-

bles i and j may be derived using a polaron transformation
of the Hamiltonian [14,30]. In the ideal confocal limit, it
takes the form

Jij¼
Δ2

Cþ κ2

ΔC

X
μ

ΞμðriÞΞμðrjÞΔμ

Δ2
μþ κ2

¼ 1

8
δ

�
ri− rj
w0

�
þ1

8
δ

�
riþ rj
w0

�
þ 1

4π
cos

�
2
ri · rj
w2
0

�
; ð2Þ

where ΔC is the detuning from the fundamental mode. The
first two terms are local and mirror-image interactions. The
local interactions are shown in blue in Fig. 1(a); for clarity,
themirror images are not shown. The local andmirror-image
interactions arise from the constructive interference of cavity
modes at the positions of the spins and their image across the
cavity axis (due to the modes’ even parity). The finite spatial
extent of the spin ensemble and cavity imperfections
regularize the delta functions to form short, but finite-range
interactions with tunable length scale ≳2 μm in realistic
cavities [10,29]. The interaction range is much smaller than
thewaist of the fundamental modew0 ¼ 35 μm.We provide
in Appendix A formulas for the J matrix that incorporate
finite Nm and size effects.
The third, nonlocal termgenerates all-to-all, sign-changing

interactions [10,11]. The nonlocal field is depicted in green
in Fig. 1(a). By choosing positions ri either close to or
far from the cavity center, the nonlocal interaction can yield
J matrices that interpolate between ferromagnetic (all
Jij > 0) and spin glass regimes [14]. The glass regime
results from J’s with randomly signed off-diagonal ele-
ments. That is, these have approximately independent and
identically distributed off-diagonal elements, roughly equal
parts positive and negative. When atoms are distributed
over a sufficiently large area, the confocal cavity-induced
J connectivity matrices exhibit eigenvalue statistics that
approximate those of a SK spin glass, the Gaussian
orthogonal ensemble [14]. Glassiness might also be achiev-
able in a confocal cavity without position disorder [42].
The transversely pumped system realizes a nonequili-

brium Hepp-Lieb-Dicke phase transition [41]. At t ¼ 0, the
system is in the “normal” state with all cavity modes in the
vacuum state and the spins pointed along Szi in j↓i. As
discussed below, we consider a protocol where the coupling
strength is ramped up as a function of time. At threshold,
the system transitions into a “superradiant” phase

characterized by macroscopically populated cavity modes
and spins that spontaneously break the global Z2 symmetry
to align along �Sxi . A sharp increase in cavity emission
heralds the superradiant transition. Concomitantly, the
spins organize and the phase of the light emitted from
each spin ensemble is locked to the spin orientation. Thus,
the spins can be imaged in real time by spatially measuring
the emitted phase of the cavity light. Holographic (spatial
heterodyne) imaging has already been demonstrated [11].
In Appendix B, we provide a derivation of a general

expression for the critical coupling strength gc at which the
superradiant threshold is reached in the semiclassical limit.
This is given by

Mg2c ¼
ωzðΔ2

C þ κ2Þ
λmaxjΔCj

: ð3Þ

Note that it depends on the J matrix through its largest
eigenvalue λmax: The form of the J matrix determines both
the threshold and the character of the ordered phase, e.g.,
ferromagnetic versus spin glass [14].
The experimental protocol we intend to model involves

ramping the transverse pump strength through the threshold
of the superradiant phase transition. We consider pump
intensities Ω2

�ðtÞ that lead to an effective Ising coupling
strength g2ðtÞ ¼ 5g2cfðtÞ, where fðtÞ is a sigmoidal func-
tion that smoothly interpolates from 0 to 1 over a 600-μs
timescale:

fðtÞ¼

8>><
>>:
0 t < 100 μs

3
�
t−100 μs
600 μs

�
2
−2

�
t−100 μs
600 μs

�
3
100≤ t≤ 700 μs

1 t > 700 μs:

ð4Þ

The ramp is the lowest-order polynomial that smoothly
interpolates between two points with vanishing first deriva-
tive; the results that follow are insensitive to the precise
functional form. The final pump intensity is 5 times the
critical value in the semiclassical limit. Given the exper-
imentally relevant parameters employed, the timescales
chosen are sufficient to allow the spins to reach an
organized steady state before the onset of spontaneous
emission, which occurs on approximately the 10-ms time-
scale. In addition, we choose to simultaneously ramp down
the transverse field as ωzðtÞ ¼ 2π × 10½1 − fðtÞ� kHz. This
could be accomplished by changing the two-photon detun-
ing of the pumps [33]. Ramping ωz to zero turns off spin
flips between different Sx states because the Hamiltonian
becomes diagonal in the Sx basis. The ramps for gðtÞ2 and
ωzðtÞ are plotted in Fig. 1(c).

III. QUANTUM TRAJECTORY SIMULATIONS

Exact numerical simulations of (open) quantum many-
body dynamics can be computationally expensive, espe-
cially in the confocal system due to the large number of
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modes in play. To explore the spin dynamics throughout the
superradiant transition, we simplify the full dynamics to an
atom-only Lindblad master equation whose derivation is a
multimode generalization of the method of Jäger et al. [43];
see Appendix C for derivation. The atom-only Hamiltonian
has the form

H¼ωz

XN
i¼1

Szi −
g2

4ΔC

XN
i;j¼1

JijSxi ðαþSxj þ iα−S
y
j þH:c:Þ; ð5Þ

where Jij is the same matrix as in Eq. (2). The other
coefficients are

α� ¼ ΔC

−ΔC þ ωz − iκ
� ΔC

−ΔC − ωz − iκ
; ð6Þ

where we restrict the treatment to the case of a completely
degenerate cavity with uniform detuning Δμ ¼ ΔC for all
modes. This is not an unreasonable approximation in the
far-detuned regime jΔCj≫κ;ωz [29]. In this limit, jαþj ≈ 2
while jα−j ≈ 2jωz=ΔCj ≪ 1. The Hamiltonian thus resem-
bles a transverse-field Ising model with an additional term
Sxi S

y
j that is sufficiently small to play little role in the

present simulations. The full atom-only master equation
has the Lindblad form ρ̇ ¼ −i½H; ρ� þP

N
k D½Ck�. The

diagonalized atom-only collapse operators are non-
Hermitian, in general, and given by

Ck ¼
g

ffiffiffiffiffiffiffi
λkκ

p
2ΔC

XN
i¼1

vki ðαþSxi þ iα−S
y
i Þ: ð7Þ

Here, vki is the ith element of the kth eigenvector of the J
matrix; all eigenvalues λk ≥ 0. Each of the N collapse
operators represents an orthogonal superposition of spin
operators. Appendix C presents its derivation.
As noted above, the experimental protocol we consider

involves ramping ωz to zero at late times. In this limit, α−
goes to zero, so the final Hamiltonian has the simple Ising
form H ∝ −

P
ij JijS

x
i S

x
j . Likewise, the collapse operators

contain only Sxi operators. As such, any Sxi eigenstate may
become a steady state above threshold (though some are
energetically preferred; see Sec. IV).
Quantum trajectory simulations of the atom-only master

equation provide a continuous record of the state of each
spin. These trajectories arise from simulating a sequence of
balanced homodyne measurements of the field emitted
from each spin ensemble; see Appendix D for details. This
mimics experimentally practicable heterodyne measure-
ments: Emitted cavity light is interfered on a camera with
local oscillator (LO) light derived from the pumps to
provide a phase reference [33]. This procedure enables
holography of the spin states; see Fig. 1(a) for illustration.
Figure 1(b) shows what such data would look like as the
homodyne signal for each spin is integrated in time. Each

signal is dominated by noise below the superradiance
threshold. Above threshold, the homodyne signals become
phase locked to the spins and undergo a bifurcation. The
sign of each homodyne signal thus serves as a measurement
of the corresponding superradiant spin state.
A single quantum trajectory evolves under the non-

HermitianHamiltonianH − i
P

k C
†
kCk=2 and is interrupted

by quantum jumps with displaced collapse operators
ðCk � iβÞ= ffiffiffi

2
p

; see Appendix D for details. These operators
represent the two quadratures of the balanced homodyne
scheme. The real number β is proportional to

ffiffiffi
κ

p
multiplied

by the coherent state amplitude of the LO and the spatial
overlap of the LO and emitted cavity light. Each collapse
operator can induce quantum jumps. To simulate the
detection of cavity emission, these are stochastically gen-
erated to independently occur at rates kðCk � iβÞjψik2=2.
The trajectories of each spin are derived from these
simulated detections, as shown in Appendix D. While the
quantum state diffusion method is simpler to define, the
quantum jump method with high LO strength (large β)
provides similar results with greater numerical stability at
late times. While β influences the timescale over which the
globalZ2 symmetry is broken, we find it does not affect the
ensemble of steady-state spin configurations that are found.

IV. QUANTUM SPIN DYNAMICS,
ENTANGLEMENT, AND ENERGY BARRIERS

We now explore the dynamics of the spin trajectories
and elucidate the role of quantum entanglement therein.
Figures 2(a) and 2(b) plot two independent quantum trajec-
tories for a network of N ¼ 15, M ¼ 1 (i.e., spin-1=2)
particles that share the same J matrix. A glassy J matrix
is selected by assigning the spins to random positions in the
cavitymidplane according to a 2DGaussian distributionwith
a 2w0-wide standard deviation [14].
We observe that a spin-aligned σxi steady-state configu-

ration emerges within a few milliseconds of crossing
the semiclassical transition threshold. Beforehand, a com-
bination of unitary quantum dynamics and stochastic
projections from the continuous measurement drive the
spins away from their initial hσzi i ¼ −S configuration.
Measurement acts to break the spin’s Z2 symmetry along
σxi . The rate at which this happens is proportional to
κg2=Δ2

C and is time dependent through g. The timescale
is approximately 5 ms at threshold and decreases to
approximately 200 μs at the end of the ramp schedule.
However, the organization timescale also depends on the
structure of eigenvectors vk of the J matrix.
We also observe that collective spin-flip events between

different low-energy states occur beyond this timescale.
A diverse range of collective spin behavior occurs. For
example, Fig. 2(a) exhibits a group of three spins approach-
ing a hσxi i ¼ −1 steady state before collectively flipping
toward hσxi i ¼ 1 at around 750 μs. By contrast, Fig. 2(b)
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shows another behavior in which a group of four spins
undergo an extended period of unbroken Z2 symmetry
before rapid organization into a steady-state configuration.
The spin trajectory in Fig. 2(a) may be visualized using

the Bloch sphere representation in Fig. 2(c). As the many-
body quantum state remains pure within a single trajectory,
paths through the interior of the Bloch sphere indicate
entanglement between spins. We see that the quantum spins
first take a nonclassical trajectory of unbroken global Z2

symmetry through the interior of the Bloch sphere. After
initially moving upward toward the center of the Bloch
sphere, the continuous measurement breaks spin-flip sym-
metry. The spins then emerge from the interior of the
Bloch sphere to reach a steady-state spin configuration.
Figure 2(d) shows the average of the paths the spins take.
Entanglement is present during both the initial organi-

zation near threshold and during subsequent spin-flip
events. We consider the entanglement entropy for each
spin, given by −tr½ρi logðρiÞ�, where ρi is the reduced
density matrix for spin i. In general, the entanglement
entropy can be nonzero for either entangled states or mixed
states. Thus, the entropy would not be a good measure of
entanglement when applied to the density matrix of the
system. However, the entropy does provide a good measure
of entanglement when applied at the level of individual
quantum trajectories because each trajectory remains glob-
ally pure at all times. We choose the entropy over other

measures of entanglement, such as the negativity [44], as it
is more computationally tractable while faithfully capturing
entanglement.
The entanglement entropy per spin is shown in Figs. 2(e)

and 2(f) for the trajectories in Figs. 2(a) and 2(b),
respectively. An initial increase near threshold can result
from unbroken global Z2 symmetry and transitions to other
low-energy states. At first, the superposition of low-energy
states largely preserves the global Z2 symmetry.
Measurement then begins to lead to superposition projec-
tion around 0.5 ms, resulting in decreasing entanglement
and the breaking of Z2 symmetry. Subsequent spikes in the
entanglement accompany the spin-flip events. Last, the
entanglement decays to zero as the spins reach a steady-
state configuration that corresponds to a classical state.
Figure 2(g) plots the entanglement entropy for each spin
averaged over 200 trajectories. The initial peak slowly
decays to zero, reflecting the occurrence of later spin-flip
events.
Figure 3 contrasts these quantum spin trajectories with

semiclassical trajectories for the same J matrix used in
Fig. 2. The spin-1=2 degrees of freedom are now replaced
with semiclassical, collective spins, each composed of
M ¼ 105 spin-1=2 atoms. The semiclassical equations of
motion are derived in Appendix E. We see that, in contrast
to the quantum dynamics, the semiclassical trajectories
exhibit a rapid organization at the semiclassical transition

FIG. 2. (a),(b) Example of two independent quantum trajectory simulations for the same system with a glassy J connectivity. The top
panels show the dynamics of the N ¼ 15 spin-1=2 system pumped through threshold. The spins begin to organize in the σxi quadrature
when the pump strength approaches the semiclassical normal-to-superradiant threshold at the time tc indicated by a vertical dashed line.
Note that the quantities plotted differ from the simulated measurement records in Fig. 1(b). (c) The same spin quantum trajectories from
(a) are shown on (and within) the Bloch sphere. Note that here, the 15 traces are colored by radius rather than spin index. The red arrows
show the general flow of the spin trajectories. (d) The averaged paths of the 15 spins, taken over 200 quantum trajectories. For each of
the 15 spins, only trajectories with the same steady state are averaged together. (e),(f) The bottom panels show entanglement entropy
versus time of each spin for the trajectory simulations above; e.g., (e) pairs with (a). (g) The entanglement entropy per spin averaged over
all 200 trajectories.
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threshold but are confined to the surface of the Bloch
sphere, indicating the lack of entanglement. Unlike the
quantum limit, large oscillations are observed around the x
axis on the Bloch sphere.
To investigate the role entanglement might play in the

evolution toward low-energy, steady-state spin configura-
tions, we plot in Fig. 4 the energy of 20 quantum and
semiclassical trajectories for the same J matrix and ramp
schedule considered in Fig. 2. The shaded region is
inaccessible to any unentangled spin state constrained to
the surface of the Bloch sphere. We identified the bounda-
ries of this semiclassically forbidden region through
Monte Carlo sampling of semiclassical spin states (i.e.,
those states constrained to the surface of the Bloch sphere)
followed by gradient descent to the lowest possible energy
state. We find that entanglement enables the quantum spins
to follow trajectories (through the Bloch sphere interior)
that bypass this semiclassical energy barrier. This allows
the quantum spin network to reach lower-energy steady-
state configurations. Slower ramps could allow the semi-
classical trajectories to follow a more adiabatic path back
downward to similarly low-energy states. However, we
find that such ramps must be at least an order of magni-
tude slower than those considered here. The addition of
noise to the initial state can also yield a ∼25% decrease in
the semiclassical steady-state energies, but this remains
an order of magnitude higher compared to quantum
trajectories.
The steady-state energy of the quantum trajectories seems

tobeprimarily controlledby the ramp rate. Evolution through
the superradiance transition has the form of a many-body
Landau-Zener problemwithmany-body gaps controlling the
adiabatic timescale of the transition. Themany-bodygapnear
the transition is on the order ofωz for a ferromagneticJ. Thus,
ω−1
z sets the timescale for adiabatic evolution through the

transition to either of the two ferromagnetic ground states. By
contrast, spin glasses are characterized by nearly degenerate
spin configurations that become exponentially numerous

with N. This results in much smaller gaps near the transition
and nonadiabatic evolution is more likely to occur, as we see
in Fig. 4(b). The chosen ramp rate is slow enough to prevent
nonadiabatic transitions to highly excited states, but not
enough to prevent transitions to the nearly degenerate local
minima states. Unitary evolution through the transition then
produces an entangled superposition of low-energy states, as
seen inFig. 2, before projection into a single spin state occurs.
The final energy of the trajectories is thus controlled by
the nonadiabatic transitions experienced during the ramp as
well as the measurement projection before ωz is ramped
to zero.

V. OVERLAP ORDER PARAMETER

We now establish the link between quantum trajectories
and the spin glass order parameter. Order in glassy
systems can be identified through correlations between
the many symmetry-broken thermodynamic states. This is
captured by the replica overlap [3], defined classically as
qαβ ¼

P
N
i hsαi ihsβi i=N where sα;β are replica spin states and

brackets denote a time average. The overlap distribution is
given by

FIG. 3. Example semiclassical trajectory simulation for the
same frustrated J matrix and the same pump ramp schedule as in
Fig. 2(a). (a) A sharper transition occurs with (b) dynamics
restricted to the surface of the Bloch sphere. Panel (a) shows that
the semiclassical transition, indicated by a vertical dashed line, is
reached at time expected from Eq. (3). The red arrows in (b) show
the general flow of spin trajectories.

FIG. 4. (a) Plot of the energy of 20 independent semiclassical
trajectories for the same J matrix as in Fig. 2. The energy is
normalized to the instantaneous quantum ground-state energy E0.
The N ¼ 15 network has M ¼ 105 spins per node. The shaded
region is inaccessible to any unentangled state, and thus the
semiclassical trajectories must climb over the barrier before
reaching steady state. The inset shows the same data with a
smaller y-axis range to show the spread of steady-state energies.
(b) By contrast, quantum trajectories can pass through the
semiclassical energy barrier via entanglement between spins.
This provides access to lower-energy steady states. Plotted are the
normalized energies of 20 independent quantum trajectories for
the same J matrix as above. Note the change in y-axis scale. The
vertical dashed line marks the semiclassical threshold. The red
[blue] colors in (a) [(b)] are chosen to be different shades only to
help distinguish one trace from another.
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PJðqÞ ¼
1

n2R

XnR
α;β

δðqαβ − qÞ; ð8Þ

where nR is the number of replicas. Each PJðqÞ can have
structure that varies depending on the disorder realization
J, even in the thermodynamic limit; this is the lack of self-
averaging inherent in spin glass [5]. Disorder-dependent
fluctuations are averaged out in the Parisi distribution
PðqÞ≡ ½PJðqÞ�J, where ½·�J denotes an average over dis-
order realizations. We discuss the central features of PðqÞ
in Sec. VI. The overlap distribution for glassy quantum
systems is defined similarly after performing a Suzuki-
Trotter mapping to an equivalent classical system [45–47];
see Appendix F for details.
To connect the overlap distribution to quantum trajecto-

ries, we first cast the overlap into a particular form that
applies directly at the quantum level. In Appendix F we
show that the overlap distribution is closely related to the
operator

O ¼ 1

N

XN
i¼1

σxi ⊗ σxi ; ð9Þ

where the σxi are Pauli operators for each site. We refer to
the above as the overlap operator given its close corre-
spondence to the classical overlap qαβ. It acts on the
doubled Hilbert space of ρJ ⊗ ρJ, where ρJ is the density
matrix for a given J realization. The statistical moments of
the Parisi distribution are shown to be given by
qðkÞ ¼ ½hOki�J. This close relation allows for a simple
expression of the overlap distribution in terms of O. To do
so, we use the eigenstate representation O ¼ P

q qPq,
where the sum over q includes all N þ 1 overlap values
linearly spaced in ½−1; 1�. The operators Pq are projections
onto the space of spin states with overlap q. The overlap is
then given by

PJðqÞ ¼
X
q0
δðq − q0ÞTr½ðρJ ⊗ ρJÞPq0 �: ð10Þ

The connection to quantum trajectories is now established
using the pure state representation ρJ¼

PnT
α¼1 jψα

Jihψα
J j=nT ,

where nT is the total number of pure states jψα
Ji. Each

quantum trajectory is one of these pure states. Inserting this
form into Eq. (10) yields

PJðqÞ ¼
1

n2T

XnT
α;β

X
q0

δðq − q0Þhψα
J j ⊗ hψβ

JjPq0 jψα
Ji ⊗ jψβ

Ji:

ð11Þ

To summarize, trajectories of the same disorder realization
can find different symmetry-broken states of the glassy
landscape due to stochastic evolution induced by the

environment. Each pair of symmetry-broken states jψα
Ji

and jψβ
Ji then contribute to PJðqÞ through their projection

onto the subspace with overlap q.
The classical expression for PJðqÞ is recovered when the

trajectories jψα
Ji are in spin eigenstates. Each state then

corresponds to a classical spin vector with elements
sαi ¼ hψα

Jjσxi jψα
Ji. Equation (11) then reduces to Eq. (8)

with the replica overlap given by

qαβ ¼
1

N

XN
i¼1

hψα
J jσxi jψα

Jihψβ
Jjσxi jψβ

Ji: ð12Þ

We refer to qαβ above as the mean-field overlap, as it
corresponds to the overlap operator O in the mean-field
limit, i.e., when trajectories are spin eigenstates and thus the
wave function factorizes between sites. The fundamental
difference between the classical and quantum overlap is
how entanglement between spins can allow for super-
positions of spin states. This allows a pair of quantum states
jψα

Ji and jψβ
Ji to contribute to multiple values of the overlap

distribution at once, which does not occur in the
classical limit.

VI. REPLICA SYMMETRY BREAKING

We now explore the emergence of RSB as the system is
pumped through the transverse Ising transition. To do so,
we first analyze the correlations between independent
quantum trajectories of a system with the same quenched
disorder for all trajectories, that is, a frustrated spin system
with the same J matrix for all trajectory simulations.
Because the trajectories ultimately reach classical steady-
state spin configurations, despite entangled quantum
dynamics at intermediate times, we study the mean-field
overlap qαβ in Eq. (12). This qαβ directly yields the overlap
distribution predicted by replica theory once steady-state
spin configurations are reached, which occurs after ∼2 ms;
it provides a mean-field estimate at earlier times. This qαβ
depends on only first-order expectation values, and thus has
the significant advantage of being directly observable from
the trajectory measurement record.
Once a steady-state configuration is found, the overlap

takes on one of N þ 1 possible values ∈ ½−1; 1�. The
overlap distribution is always symmetric about 0 due to
the global Z2 symmetry, in the absence of a longitudinal
field. An ordered phase will exhibit an overlap distribution
containing “goalpost” peaks at q ¼ �qEA, where qEA ¼
qαα is the Edwards-Anderson order parameter, also known
as the self-overlap. (Paramagnets do not have such peaks,
but ferromagnets and spin glasses do.) Peaks may also arise
associated with overlaps qαβ between replicas that settle
into different spin states. These additional nonvanishing
peaks between the goalposts indicate RSB and arise from
the smaller overlap between distinct, low-energy states [5].
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We first consider the overlap distribution for the same J
matrix considered in Figs. 2–4. Figures 5(a)–5(e) show the
time evolution of qαβ as it approaches steady state, around
4 ms. To construct the overlap distribution of a fixed J
matrix, we consider 200 quantum trajectories with identical
initial conditions and the same ramp schedule as shown in
Fig. 1(c). We then compute the overlap qαβ between every
pair of the 200 replicas and bin the results as a function of
time. We exclude the self-overlaps qαα because, while they
have vanishing weight in the limit of an infinite number of
replicas, they provide an asymmetric bias to only the
positive q ¼ qEA peak of the overlap for finite sample
sizes. At t ¼ 0, the system is in the normal (paramagnetic)
state and the overlap between any two replicas is zero
because hσxiαi ¼ 0 for all spins in the initial σzi state. A
nonzero overlap emerges as the spins transition to the
superradiant regime and align along �σxi . The final overlap
distribution shows goalpost peaks at �qEA. We find qEA ≈
1 in the parameter regime of our simulation, but note that
qEA is commonly overestimated due to finite-size effects
[48]. Interior peaks indicate RSB. These interior peaks arise
from correlations between distinct spin configurations that
are local minima of the Ising energy E ¼ −

P
ij Jijsisj,

where all si ¼ �1. By local minimum, we refer to spin
states for which flipping any single spin raises the total
energy. We note that the steady-state overlap distribution is
independent of the exact measurement scheme; for any LO
strength β > 0 the same ensemble of spin states are found,
leading to the same overlap distribution.
Figures 5(f)–5(j) show the full overlap matrix qαβ versus

time before we bin into the above histograms. In the
thermodynamic limit, the Parisi ansatz for the solution to

the SK model predicts an ultrametric overlap structure
emerging from RSB. Specifically, the ansatz predicts a
nested block-diagonal structure where the overlap magni-
tudes are larger in the diagonal blocks than in the off-
diagonal blocks. The diagonal blocks are then expected to
further divide into smaller diagonal blocks with larger
overlap and off-diagonal blocks with smaller overlap, and
so on. The ansatz thus predicts a self-similar overlap matrix
in the limit N → ∞, while for finite-size systems the self-
similarity truncates at a finite depth. For the N ¼ 15 case in
Fig. 5(j), we find evidence for up to three levels of the RSB
block structure. A primary 2 × 2 block structure emerges
that approximately separates replicas 1–100 from 101–200.
The primary block of replicas 1–100 is further subdivided
into 2 × 2 blocks separated near replica 30, distinguishing
regions of higher overlap from lower. Evidence for tertiary
block structure may be found in the subblock containing
replicas 30–100; a final subdivision may be seen near
replica 55. We leave to future work quantitative analyses of
self-similarity, the depth of RSB, and how RSB scales with
N. However, we later quantify the degree of ultrametricity
in the overlap distribution in Sec. IX.
To provide further insight, we delve into the structure of

the steady-state overlap distribution produced by the J
matrix considered in Figs. 2–5. This J matrix induces a
rugged Ising energy landscape that contains six local
minima not related by the global Z2 symmetry. These
were found by numerically enumerating all spin states. Of
the 200 quantum trajectories in Fig. 5, 66% reached one of
these six local minima in steady state. An additional 20%
were within one spin flip of a local minimum, while the
remaining 14% were between two to four spin flips away.

FIG. 5. (a)–(e) Time evolution of qαβ for 200 quantum trajectories corresponding to the J matrix in Figs. 2–4. Each panel shows the
probability for each spin overlap value to occur at each given time during the ramp sequence. Error bars in this figure and in subsequent
figures are estimated from bootstrap analysis; see Appendix G for details. (f)–(j) Time evolution of the full overlap matrix qαβ. The time
that corresponds to each panel is the same as the panel above. The histograms in (a)–(e) can be recovered by binning the off-diagonal
values in the overlap matrix. Each overlap matrix is ordered via an independent hierarchical clustering of spin states at each time.
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To show the relation of each minima’s occurrence prob-
ability to its energy, we plot these together in Fig. 6(a),
binning each trajectory by its nearest local minimum.
The result shows a clear anticorrelation: The trajectories
with lowest-energy, steady-state spin configurations are
observed most frequently. Though the system is not in
thermal equilibrium, this tendency to low-energy states is
reminiscent of a low-temperature system; see Sec. VII for a
discussion of system temperature.
The overlap matrix between local minima is plotted in

Fig. 6(b). The numbers in the matrix entries are the absolute
value of the overlap values between the indicated minima.
The diagonal entries correspond to the self-overlap, which
is always unity. The overlap matrix allows us to pinpoint
the pairs of spin configurations that create each peak in the
overlap distribution of Fig. 5(j). This plot is reproduced in
Fig. 6(c). Every peak in the distribution can be understood
by considering the overlaps between the first three local
minima in Fig. 6(b). Each peak in the distribution is
annotated with the pair of minima X∶Y that produce that
value of the overlap. The remaining local minima were
found too infrequently to produce any distinct peaks in the
overlap distribution.

Each J matrix produces a different set of local minima,
and thus different overlap distributions. This is evident in
an ensemble of 100 confocal J matrices produced by
assigning spins to different random locations in the cavity
midplane with standard deviation 2w0, which lies in the
spin glass regime [14]. The overlap distribution for each J
matrix is constructed from 200 quantum trajectories as in
Fig. 5. Resulting steady-state overlap distributions for three
representative J’s are shown in Fig. 7. Appendix H has
plots of all 100 overlap distributions.
The overlap distributions all exhibit �qEA peaks with

qEA equal to unity for most disorder realizations. Variation
within the interior demonstrates that the correlations
between low-energy minima vary between J matrices.

FIG. 6. (a) The energy of the six local minima of the Ising
energy for the J matrix considered in Figs. 2–5. Also plotted are
the occurrence probabilities of those local minima as steady states
for the 200 quantum trajectories. (b) The spin overlap matrix of
these six local minima. (c) The same spin overlap distribution as
in Fig. 5(e), but with annotated peaks. The notation X∶Y indicates
that the peak arises from the overlap of the local minima X and Y
in the list of (a). Finite probability in the unlabeled bins is due to
fluctuations of the overlap peaks around the labeled local minima.

FIG. 7. Steady-state overlap distribution and overlap matrix for
200 quantum trajectories of three different confocal J matrices.
The best-fit thermal distributions are shown in red. (a) Example of
a J matrix that produces a dominant low-energy state; most
trajectories find the same steady-state spin configuration. The
temperature for the thermal fit is Tfit ¼ 0.17ð1ÞTc. (b) A J matrix
with multiple peaks and levels of structure in the overlap. The
thermal fit yields Tfit ¼ 0.23ð4ÞTc. (c) A more complex J matrix.
Quantum trajectories find a large set of steady-state configura-
tions. The thermal fit yields Tfit ¼ 0.17ð3ÞTc.
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This is the non-self-averaging phenomenon inherent to SK
spin glasses [5]. The three J matrices are chosen to display
a representative diversity of structure found in the overlap
distributions. The J in Fig. 7(a) produces an overlap
distribution that is dominated by a single low-energy spin
configuration. Other peaks (from different configurations)
occur in only ∼10% of the trajectories. Figure 7(c) shows
the other extreme in which many different spin configu-
rations are found with multiple levels of clustering between
states. This overlap matrix is indicative of a far glassier
system. The character of most overlap matrices falls
between these two for our system size of N ¼ 15, such
as the J in Fig. 7(b).
In the large-size limit, high peaks should be sparse in

the overlap distribution because only a small set of
thermodynamic states have significant weight. The peak
positions do not average out into a smooth distribution
between the goalposts. This is indicative of the lack of
self-averaging manifest in these order parameter observ-
ables of the spin glass state. The order parameter that does
average is the Parisi distribution [5], which we discuss in
Sec. VIII.

VII. EFFECTIVE TEMPERATURE

The overlap distributions do not appear to be consistent
with an effective thermal equilibrium model. This is not
surprising in this driven-dissipative quantum optical setting.
Nevertheless, it is instructive to compare these distributions
to those expected at equilibrium. Equilibrium overlap dis-
tributions can be constructed by assigning probabilities to
spin states according to a Boltzmann factor expð−E=kBTÞ,
where E is the Ising energy of the spin state and T is an
effective equilibrium temperature that serves as a fit param-
eter. The overlap between all pairs of states is then binned and
weighted by their Boltzmann factors. We perform a least-
squares fit to each of the overlap distributions in Fig. 7 to
extractTfit. The correspondingdistributions are shown in red.
The extracted temperatures are provided in units of Tc, the
largest eigenvalue of the J matrix averaged over all J
matrices. This quantity corresponds to the critical temper-
ature for the SK spin glass transition in the thermodynamic
limit [4]. In our finite system, Tc corresponds to the average
crossover temperature.
While the equilibrium model does capture the location

of peaks in the overlap distribution, it is not able to
quantitatively match their heights; instead, they seem to
often be underestimated (overestimated) near the center
(wings) of the distribution. The average Tfit is 0.21ð8ÞTc.
Despite the lack of quantitative correspondence, the fitted
temperatures are well enough below Tc to infer the
presence of a low-energy ordered phase in this system,
even when using realistic parameters. Indeed, the authors
have observed such states in a related experimental
system [13].

VIII. SPIN GLASS, FERROMAGNETIC,
AND PARAMAGNETIC PHASES

Two order parameters are needed to distinguish between
the different types of phases described by the Ising
Hamiltonian. These are the J-averaged spin overlap dis-
tribution, also known as the Parisi order parameter, and the
usual magnetization. The magnetization order parameter
m ¼ P

ihσxi i=N is used to discriminate ferromagnetic from
glass or paramagnetic ordering. It should approach �1 at
low temperature in a ferromagnetic state but be close to
zero in the spin glass and paramagnetic phases.

FIG. 8. Aggregate overlap andmagnetization distributions in spin
glass, ferromagnetic, and paramagnetic phases. The best-fitting
thermal approximation is shown in red for all panels. (a) Confocal J
matrices in the spin glass regime showing a smooth Parisi-like
distribution and a magnetization peaked near zero. The thermal fit
yields Tfit ¼ 0.21ð2ÞTc. (b) Ferromagnetic regime showing the
absence of interior support in the overlap and strong peaks in
themagnetization. The thermal fit yieldsTfit ¼ 0.011ð2ÞTc. (c) The
same set of spin glass J matrices as in (a), but the system is rapidly
quenched into the superradiant regime rather than rampedaccording
to fðtÞ. The overlap and magnetization both cluster around zero,
indicative of a paramagnetic phase. The thermal fit is poorly
constrained in this regime: Shown is the distribution for
Tfit ¼ 5Tc, which bears similarity to the data.

ENTANGLEMENT AND REPLICA SYMMETRY BREAKING IN A … PHYS. REV. X 14, 011026 (2024)

011026-11



The spin glass is distinguished from the paramagnet via
the Parisi order parameter, the J-averaged overlap distri-
bution. The average should form a smooth distribution for
the SK spin glass. The paramagnet has a Parisi order
parameter distribution that is peaked around zero, while the
spin glass and ferromagnet are peaked around �qEA. Last,
while the ferromagnet’s Parisi distribution has no support
between �qEA, the spin glass has a “net-with-goalposts”
structure of smooth interior support.
We average the overlap and magnetization distributions

for 100 confocal J matrices to yield the aggregate dis-
tributions in Fig. 8(a). Distributions characteristic of a spin
glass arise, consisting of extremal peaks at �qEA bridged
by a continuous interior for the overlap and a magnetization
peaked near zero. This is consistent with the result expected
from the Parisi solution to the SK spin glass [5].
A fit to the thermal equilibrium model yields a

Tfit ¼ 0.21ð2ÞTc, closely matching the average temperature
found from the individual fits discussed above. The
magnetization is well approximated by a centered binomial
distribution, indicating that the local minima are uncorre-
lated with a ferromagnetic state. The standard deviation
0.31 of this distribution is close to that expected of the SK
model at this system size, 1=

ffiffiffiffi
N

p
≈ 0.26. The difference

from a Gaussian may indicate a small ferromagnetic
remnant in the confocal J matrices that could be eliminated
by placing spins farther from the cavity midpoint [14].
By contrast, the ferromagnetic confocal J matrices reveal

a very different behavior in Fig. 8(b). The ferromagnetic
ensemble is constructed by using Gaussian-distributed spin
positions with standard deviation of only 0.5w0 in the cavity
midplane. This leads to ferromagnetic J matrices with
predominantly positive matrix elements and two global
ground states corresponding to the two fully aligned spin
states [14]. Two hundred quantum trajectories with the same
ramp schedule as in Fig. 1(c) are used to construct the overlap
and magnetization distribution per J matrix. The distribu-
tions are then averaged over the 100matrices in the ensemble
to produce the aggregate distributions in Fig. 8(b). The lack
of support in the interior of the overlap and magnetization
distributions indicates that only these two Z2-related spin
states are found with high probability. This is consistent with

a ferromagnetic phase. A least-squares fit to the thermal
model yields a temperature Tfit ¼ 0.011ð2ÞTc, where Tc is
twice the maximum eigenvalue for J matrices in the
ferromagnetic regime [4]. The Tfit is lower than that found
for the spin glass ensemble. This may be due to the larger
energy gap to the ground state in the unfrustrated ferromag-
netic Jmatrices. This makes it easier tomaintain adiabaticity
during the ramp, and fewerLandau-Zener transitionsmeans a
lower effective temperature.
A paramagnetic regime can be accessed by quenching

the system into the superradiant regime rather than slowly
ramping through the transition. In this case, adiabaticity
is lost, and transitions into many excited states occur.
Figure 8(c) shows the overlap and magnetization distribu-
tions that result from such a quench. The same spin glass J
matrices as in Fig. 8(a) are considered, with 200 quantum
trajectories per J, and all other parameters remain the same.
Both the overlap and magnetization distributions are well
approximated by centered binomial distributions of stan-
dard deviation 1=

ffiffiffiffi
N

p
. This is indicative of a paramagnetic

phase in which states are found at random.
Last, we present in Fig. 9 the dynamical evolution of the

Parisi order parameter distribution for the spin glass. The
distribution becomes, after around 2 ms, Fig. 8(a) in steady
state. We also note that a finite-size scaling analysis of the
Binder ratio 1 − hq4αβi=ð3hq2αβi2Þ is often used to pinpoint
the exact location of the spin glass transition [49]. However,
the Binder ratio is ill defined in this quantum system at
early times because the overlap distribution begins as a
delta function at t ¼ 0, for which both the second- and
fourth-order moments are zero. This happens because the
spins begin aligned along σz rather than σx, a difficulty not
encountered in typical equilibrium states of the classical
Ising model. This makes the scaling analysis in this system
more complicated, which we leave to future work.

IX. ULTRAMETRICITY

A prediction of Parisi’s RSB ansatz for the SK spin
glass solution is the formation of an ultrametric structure in
the space of replicas [50]. An ultrametric space is one
satisfying the strong triangle inequality: Given any three

FIG. 9. (a)–(e) Time evolution of the J-averaged Parisi distribution. The overlap distribution is averaged over all 100 J matrices in the
confocal spin glass regime. The times are chosen to match those in Fig. 5. The steady-state distribution emerges after approximately
2 ms, demonstrating the distinctive goalpost peaks with a continuously filled interior.
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points x, y, and z, the distances between those points should
satisfy dðx; zÞ ≤ max½dðx; yÞ; dðy; zÞ�. It can be shown from
this inequality that any triplet of points must form an
isosceles triangle, either acute or equilateral. In the SK spin
glass, replicas cluster into groups corresponding to low-
energy local minima. Any triplet of replicas obeys this
inequality in the thermodynamic limit, where the distance
between replicas is the normalized Hamming distance, or
equivalently dðα; βÞ ¼ 1 − jqαβj.
Numerical studies have verified that ultrametricity slowly

emerges in system sizes up to 103 [51–53]. The approach to

ultrametricity is quantified by use of the metric K ¼
ðdmax − dmedÞ=σðdÞ, where dmax is the largest distance in
a given triplet of states and dmed is the second largest (or the
median). Their difference should be zero in an ultrametric
space due to the isosceles condition. The difference is
normalized by σðdÞ, thewidth of the distribution of distances
between all states in the ultrametric space.
The overlap matrices and distributions in Figs. 5–7

already exhibit the expected clustering of replicas into
groups associated with local minima. Figure 10(a) dem-
onstrates this even more clearly by plotting the associated
dendrogram above the overlap matrix. The clustering of
replicas into four primary groups is visible.
Figure 10(b) plots the J-averaged distribution of K as a

function of system size. For each N, we generate 100
confocal J matrices in the spin glass regime and perform
200 quantum trajectories per J. For each J, the K
distribution is computed between all triplets of trajectories
and the resulting distribution is averaged over J matrices.
We begin the analysis at N ¼ 8 because we find that low-
energy local minima are not reliably present in smaller
systems, with only a single cluster of states typically found.
But even over the restricted range of N available, we find
that the K distribution becomes increasingly narrow with
increasing N. Moreover, Fig. 10(c) plots the mean of the K
distribution with N, further showing a decrease in K with
N. These constitute evidence for the emergence of ultra-
metricity in the system. Oscillations in hKi may arise from
finite-size effects but appear to dampen with increasing N.
We conclude that there is evidence for an approach to
ultrametricity that is consistent with the significant finite-
size effects found in SK spin glasses [52].

X. DISCUSSION

In summary, the transient formationof entangled states in a
confocal cavity QED system allows RSB, concomitant with
Ising symmetry breaking, to arise via the interplay of unitary
Hamiltonian evolution and dissipative dynamics. The result-
ing Parisi distribution does not appear to be in equilibrium,
which is expected given the driven-dissipative nature of the
open quantum system.We note that previous work identified
an effective temperature Teff ¼ ðΔ2

C þ κ2Þ=4jΔCj [14,54]
associated with the multimode cavity QED dissipative
dynamics. Such a temperature was found by considering
detailed balance between energy-raising and energy-low-
ering processes in a system driven far above threshold. This
effective temperature is much larger than Tc in the spin-1=2
limit. (Although it is small in the semiclassical limit when
M ≫ 1 [14].) Fortunately, however, this poses no obstacle to
observing sufficiently low-energy states and RSB because
the ramp through threshold reaches a quasisteady state much
faster than the timescale ∝ Δ4

c=ðg2ω2
zκÞ at which thermal-

ization at Teff would occur [14].
Last, we note that the light-matter coupling strength

required to reach the superradiant threshold for the

FIG. 10. (a) The replica overlap matrix of 200 quantum
trajectories for a confocal J matrix in the spin glass regime.
The states cluster into one of four primary groups of states, which
also appear as four primary blocks on the matrix diagonal. The
above dendrogram shows the hierarchical clustering associated
with the fracturing of the overlap matrix into four sectors, with
various degrees of correlation between sectors. (b) The distribu-
tion of the K metric for ultrametricity, averaged over 100
realizations of J matrix for each system size. The distribution
becomes increasingly peaked near zero, providing evidence of an
ultrametric space emerging with increased system size. (c) The
mean of the J-averaged K distribution as a function of system
size, further showing the emergence of an ultrametric space.
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spin-1=2 system is higher by a factor of
ffiffiffiffiffi
M

p
compared to the

semiclassical limit. We estimate that this interaction strength
could be achieved by Rydberg dressing large atomic ensem-
bles to yield a Rydberg blockade within each [31]. This
allows each spin ensemble to behave as if it were a single
spin-1=2 degree of freedom while retaining the same
collectively enhanced coupling strength ∝

ffiffiffiffiffi
M

p
g0 [55].

Coupling to a Rydberg state could be realized through the
addition of two pump lasers to the atomic level scheme in
Fig. 1(d); Ref. [31] provides more details. Briefly, a laser at
780 nm would drive the j↑i state to the atomic excited state
52P3=2, while a blue beam at 479 nmwould drive a transition
from this excited state to the 1002S1=2 Rydberg state.
(Rydberg dressing inside optical cavities has been achieved
[56].) The combined coupling terms produce a dark state that
mixes the Rydberg and j↑i states while avoiding the atomic
excited state. Conservatively estimating an 8-μm average
interatomic separation within a spin ensemble, a Rydberg-
Rydberg interaction strength on the order of 200 MHz could
be achieved. This should be sufficiently strong to push
multiply excitedRydberg states far off resonance, resulting in
an effective spin-1=2 degree of freedom for each spin
ensemble. The spontaneous emission lifetime of the atoms
is estimated to be greater than 10 ms—longer than the
timescales shown above for RSB to emerge. This would
allowRSB to beobserved in a quantumoptical contextwhere
implementations of, e.g., associative memory [14,17,57–61]
might be realized. Doing so would provide experimental
access to questions regarding how quantum effects might
determine memory capacity and fidelity.

The research data supporting this publication can be
accessed on the Harvard dataverse [62].
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APPENDIX A: CONFOCAL J MATRICES

Here, we provide a simple approximation to the form of
confocal J matrices for realistic cavities. The J matrix is

given by the confocal cavity-mediated interaction evaluated
at the positions of the atomic ensembles. The interaction is
derived from the Green’s function Gðr; r0; αÞ for the
harmonic oscillator, which is used to compute sums over
the cavity’s Hermite-Gauss mode functions ΞlmðrÞ, indexed
by the integers l, m > 0. This is given by

Gðr; r0; αÞ
≡X

l;m

ΞlmðrÞΞlmðr0Þe−ðlþmÞα

¼ eα

2π sinhðαÞ exp
�
−

ðr − r0Þ2
2w2

0 tanhðα=2Þ
−

ðrþ r0Þ2
2w2

0 cothðα=2Þ
�
;

ðA1Þ
where α is any complex number with real part greater than
zero and w0 is the waist of the fundamental mode. In a
confocal cavity, a given resonance supports only the set of
even modes or the set of odd modes. As such, it is useful to
define the Green’s function corresponding to either even
modes (symmetrized) or odd modes (antisymmetrized).
Choosing the even case, the symmetrized Green’s function
is defined as Gþðr; r0; αÞ ¼ ½Gðr; r0; αÞ þGðr;−r0; αÞ�=2.
The confocal cavity-mediated interaction Dðr; r0Þ is
expressed in terms of Green’s functions [29,30]:

2Dðr; r0Þ ¼ Gþðr; r0; αÞ þ Gþðr; r0; αþ iπ=2Þ: ðA2Þ
The ideal interaction for a perfectly degenerate cavity with
infinite mode support and delta-function-wide atomic
ensembles is found by setting α ¼ 0. The α ¼ 0 limit
corresponds to the J matrix in Eq. (2).
Allowing for α > 0 provides a good approximation for

cavities with both mirror aberrations and finite-sized atomic
ensembles [29]. In this work, we use α ¼ 0.02 to achieve a
ratio of approximately 10 between the local and nonlocal
interactions, which roughly matches observations in recent
confocal cavity experiments [10]. This α yields local and
mirror interactions with Gaussian waist much smaller than
w0 and a nonlocal interaction that has a large Gaussian
envelope of waist much larger w0. While finite α does limit
the maximum distance over which the nonlocal interaction
can occur, it does not significantly affect the J matrices for
this work, which considers atomic positions out to only
∼4w0. We note that the precise form of the confocal
interaction depends on the details of both the atomic
distribution and the nature of the cavity imperfections
[29]. However, these precise details matter little for the
present work since they result in only small changes to the
already disordered J matrices.
The degree of randomness in the J matrices produced by

this cavity-mediated interaction was studied in depth in
previous work [14]. The elements of the J matrix become
increasingly uncorrelated asw, the standard deviation of the
atomic positions in the cavity midplane, becomes large
compared with w0 ¼ 35 μm, the waist of the fundamental
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mode of the cavity. The correlation between randomly
chosen Jij elements is less than 1% for w ¼ 2w0, which is
the value of w considered in the main text for generating
glassy J matrices. This lack of correlation comes about
because of the incommensurate periodic dependence of Jij
on the positions ri, rj. The confocal J matrices produce
eigenvalue spectra that approach a semicircle distribution,
as expected for random matrices drawn from the Gaussian
orthogonal ensemble, precisely like those of the SK model.
At the system size N ¼ 15 considered in the main text, the
eigenvalue distribution is within 5% of the Gaussian
orthogonal ensemble semicircle distribution.

APPENDIX B: DERIVATION
OF SEMICLASSICAL CRITICAL

COUPLING STRENGTH

We now derive Eq. (3) for the critical coupling strength
of the superradiant phase transition using linear stability
analysis. The spin operators Sαi are first mapped to bosonic
operators bi through the Holstein-Primakoff transformation,

Szi → −M=2þ b†i bi; Sxi →

ffiffiffiffiffi
M

p

2
ðb†i þ biÞ; ðB1Þ

where M is the number of atoms per ensemble. This
transformation accurately models fluctuations around the
normal phase when M is large. The original Hamiltonian in
Eq. (1) is then transformed, up to a constant shift, to

H0 ¼ −
XNm

μ

Δμa
†
μaμ þ ωz

XN
i¼1

b†i bi

þ
XN
i¼1

XNm

μ

giμða†μ þ aμÞðb†i þ biÞ; ðB2Þ

where Nm is the total number of cavity modes and giμ ¼
g

ffiffiffiffiffi
M

p
ΞμðriÞ=2 is the effective spin-photon coupling strength.

The operator equations of motion, including cavity dissipa-
tion, are given by

ȧμ ¼ ðiΔμ − κÞaμ − i
XN
i¼1

giμðb†i þ biÞ;

ḃi ¼ −iωzbi − i
XNm

μ

giμða†μ þ aμÞ: ðB3Þ

The equations ofmotion are linear and thus directly solvable.
To organize the set of operators, we introduce an operator-
valued vector,

u ¼ ðb1; b†1;…; bN; b
†
N; a1; a

†
1;…; aNm

; a†Nm
ÞT; ðB4Þ

where the first 2N elements of u are the atomic operators
followed by 2Nm cavity operators. Using this notation, the
equations of motion can be written in the concise form
u̇ ¼ Au for a linear operator A.
The critical coupling strength gc can be found from the

retarded Green’s function, which describes the response of
the system to an external drive. It takes the matrix form
GR

ijðtÞ ¼ −ih½viðtÞ; v†jð0Þ�iθðtÞ, where θðtÞ is the Heaviside
step function. The Fourier transform is then defined by
GR

ijðωÞ ¼
R
dteiωtGR

ijðtÞ. The Green’s function is related to
the linear operator A by ½GRðωÞ�−1 ¼ S−1ðω − iAÞ in the
case of linear Heisenberg equations [40], where Sij ¼
h½við0Þ; v†jð0Þ�i are the equal time commutation relations.
In this case, S ¼ diagðþ1;−1;þ1;−1;…Þ follows from
canonical bosonic commutation relations. The full inverse
Green’s function, while large, has a simple 2 × 2 block
form. The first few rows and columns of each block are
shown below:

½GRðωÞ�−1¼−

0
BBBBBBBBBBBBBBBBBBBBB@

ωz−ω 0 0 0 ��� g11 g11 g12 g12 ���
0 ωzþω 0 0 ��� g11 g11 g12 g12 ���
0 0 ωz−ω 0 ��� g21 g21 g22 g22 ���
0 0 0 ωzþω ��� g21 g21 g22 g22 ���
..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. . .

.

g11 g11 g21 g21 ��� −Δ1−ω−iκ 0 0 0 ���
g11 g11 g21 g21 ��� 0 −Δ1þωþ iκ 0 0 ���
g12 g12 g22 g22 ��� 0 0 −Δ2−ω− iκ 0 ���
g12 g12 g22 g22 ��� 0 0 0 −Δ2þωþ iκ ���
..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCCCCCCCA

: ðB5Þ
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We analyze the Green’s function by first assigning blocks
of the matrix:

½GRðωÞ�−1 ¼ −
�
Dspin C

CT Dcav

�
: ðB6Þ

The diagonal matrix Dspin is 2N × 2N with alternating
elements ωz − ω, then ωz þ ω. The matrix Dcav is also
diagonal of size 2Nm × 2Nm, with elements −Δμ − ω − iκ,
followed by −Δμ þ ωþ iκ. In this expression, μ increases
from 1 to Nm. The matrix C describes coupling between
the cavity modes and spin modes and is of size 2N × 2Nm.
It is most easily expressed in terms of 2 × 2 blocks given by

Ciμ ¼ giμ

�
1 1

1 1

�
; ðB7Þ

where i∈ ½1; N� and μ∈ ½1; Nm�.
We now determine when an instability in the normal

phase occurs by considering the poles of the inverse
Green’s function. The poles dictate the characteristic
response frequencies of the system, and thus the determi-
nation of when ω ¼ 0 becomes a pole probes the global
stability of the phase. This point can be found by consid-
ering when detf½GRðω ¼ 0Þ�−1g crosses zero. This pro-
cedure relates to a normal mode analysis of the linear
equations of motion, in which the system is stable only
when all eigenvalues of A are greater than zero. The
determinant can be written using the Schur complement
[63] of Dcav:

det½GRðωÞ�−1 ¼ detðDspin − CD−1
cavCTÞ detðDcavÞ: ðB8Þ

Because Dcav is diagonal, we find that detðDcavÞ ¼Q
μðΔ2

μ þ κ2Þ is always positive. Thus, the instability
condition simplifies to det ðDspin − CD−1

cavCTÞ ¼ 0. The
matrix inside the determinant has a simple tensor product
structure. At ω ¼ 0 it is given by

Dspin−CD−1
cavCT

ωz
¼ I−

Mg2jΔCj
2ωzðΔ2

Cþ κ2ÞJ⊗
�
1 1

1 1

�
; ðB9Þ

where ⊗ denotes the tensor product, I is the identity
operator, and J is the cavity-mediated interaction connec-
tivity matrix introduced in Eq. (2).
We must now determine when one of the eigenvalues of

the above matrix crosses zero. The identity matrix simply
shifts all eigenvalues by one. The eigenvectors of the total
matrix nowhave the form vk ⊗ w, where vk is an eigenvector
of J with eigenvalue λk ≥ 0 and w is an eigenvector of the
second matrix of ones. The second matrix has a zero
eigenvalue and a nonzero eigenvalue 2 with eigenvector

ð1; 1Þ= ffiffiffi
2

p
. We thus find that half of the eigenvalues of the

matrix in Eq. (B9) are degenerate with value one, and the
other half are given by

1 −
Mg2jΔCjλk
ωzðΔ2

C þ κ2Þ : ðB10Þ

The smallest value of g for which one of the above
eigenvalues crosses zero sets the critical coupling strength
gc. The critical coupling thus depends on the largest
eigenvalue λmax of the J matrix. Inserting λmax, setting
the expression to zero, and solving for g yields the critical
coupling strength of Eq. (3).

APPENDIX C: DERIVATION OF THE
ATOM-ONLY THEORY

We apply the method of Jäger et al. [43] to produce an
atom-only theory for spins in a confocal cavity. The method
accurately reproduces the low-energy spectrum of the
single-mode driven-dissipative Dicke model, both below
and above threshold. We extend the method to the multi-
mode, multiple spin ensemble case described by the
Hamiltonian in Eq. (1).
We must first find “effective fields” corresponding to

operators in the spin Hilbert space that best approximate the
effect of the cavity modes. There is one effective field S̃μ for
each cavity mode that is eliminated. The field may be time
dependent. The effective fields are chosen to satisfy the
differential equations:

d
dt

S̃μ ¼ −i½H0; S̃μ� þ ðiΔμ − κÞS̃μ − ig
X
i

ΞμðriÞSxi : ðC1Þ

Solving for the effective fields begins with an ansatz of the
form

S̃μ ¼
X
i

½xþμiðtÞSþi þ x−μiðtÞS−i �: ðC2Þ

Inserting the ansatz into Eq. (C1) yields the following
differential equations for the coefficients:

d
dt

x�miðtÞ ¼ ½iΔμ ∓ iωzðtÞ − κ�x�μiðtÞ − i
gðtÞ
2

ΞμðriÞ: ðC3Þ

This equation can be solved explicitly in the limit that the
ramp function fðtÞ changes slowly over the cavity loss
timescale 2π=κ ≈ 10 μs. This limit is well satisfied given
that fðtÞ ramps over a period of 600 μs. In this limit, the
differential equations are given by the solutions

x�μiðtÞ ¼ −
gðtÞΞμðriÞ

2½−Δμ � ωzðtÞ − iκ� : ðC4Þ
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We now restrict ourselves to the degenerate case Δμ ¼ ΔC

for all μ. The effective fields can then be written as

S̃μ ¼ −
gðtÞ
2ΔC

XN
i¼1

ΞμðriÞðαþSxi þ iα−S
y
i Þ; ðC5Þ

with α� given by Eq. (6).
The effective fields can then be used to write the atom-

only master equation. The Hamiltonian part is given by

H ¼ ωz

XN
i¼1

Szi þ
gðtÞ
2

XN
i¼1

Sxi
X
μ

ΞμðriÞðS̃μ þ S̃†μÞ: ðC6Þ

Inserting the effective fields from Eq. (C5) and recognizing
the J matrix then leads to the atom-only Hamiltonian
presented in Eq. (5). The full form of the master equation
is now

ρ̇ ¼ −i½H; ρ� þ κ
X
μ

D½S̃μ�: ðC7Þ

While correct, this expression is complicated to use because
it involves an infinite sum of dissipation terms. This can be
avoided by noting that there are only N linearly indepen-
dent jump operators that can be created out of the N
operators αþSxi þ iα−S

y
i . As such, one can rewrite the

dissipation term by expanding the effective fields. This
yields

ρ̇¼−i½H;ρ�

þ κgðtÞ2
4Δ2

C

XN
ij¼1

JijD½αþSxi þ iα−S
y
i ;αþS

x
j þ iα−S

y
j �; ðC8Þ

where D½X; Y� ¼ 2XρY† − fY†X; ρg is the nondiagonal
Lindblad superoperator, and the Lindblad-Kossakowski
matrix J is exactly the cavity-mediated interaction matrix
defined in Eq. (2). Diagonalization of J brings the
Lindbladian into diagonal form ρ̇ ¼ −i½H; ρ� þP

k D½Ck�,
with collapse operators:

Ck ¼
g

ffiffiffiffiffiffiffi
λkκ

p
2ΔC

XN
i¼1

vki ðαþSxi þ iα−S
y
i Þ: ðC9Þ

The square of the coefficients multiplying the collapse
operators gives the associated decoherence rates. A total
decoherence rate per spin can be estimated by approxi-
mating the elements vki of the normalized eigenvectors as
uncorrelated random variables. Their variance should be
1=N to enforce unit normalization. We also approximate
jαþj ¼ 2 and α− ¼ 0, which is valid well above threshold.
The summed decoherence rate per spin can then be
approximated as ðκg2=Δ2

CÞ
P

N
k¼1 λk.

APPENDIX D: STOCHASTIC UNRAVELING
AND RECONSTRUCTING THE SPIN

MEASUREMENT RECORD

The general formalism for homodyne unraveling has
been well described by various authors [6–8]. We provide a
brief discussion of the specific measurement approach, and
thus the associated unraveling scheme that we use in this
work, which is based on invariance properties of the
Lindbladian.
Spatial heterodyne detection is derived from the inter-

ference pattern of the LO and cavity light on a charged-
coupled device camera [11,33]. While the measurement is a
spatial heterodyne detection, meaning that the LO and
cavity light have different propagation directions, the LO
and cavity light possess the same optical frequency, as in
a homodyne detection. We thus model the detection
scheme as a balanced homodyne detection of the emitted
cavity field.
To derive the unraveling corresponding to balanced

homodyne measurements, we start by considering the
atom-only master equation with Lindblad form,

ρ̇ ¼ −i½H; ρ� þ
XN
k¼1

D½Ck�; ðD1Þ

where the collapse operators Ck are given by Eq. (7). We
can then manipulate the master equation to cast it in terms
of the collapse operators corresponding to balanced homo-
dyne detection. First, we write the Lindblad superoperators
as a sum of two equal terms with rescaled collapse
operators:

ρ̇ ¼ −i½H; ρ� þ
XN
k¼1

ðD½Ck=
ffiffiffi
2

p
� þD½Ck=

ffiffiffi
2

p
�Þ: ðD2Þ

We then use the shift-invariance property of the master
equation, which admits shifts of a collapse operator
C → Cþ aI if the Hamiltonian is also modified as H →
H − iða�C − aC†Þ. We perform shifts Ck → Ck � iβI for
each k and pair of collapse operators in Eq. (D2). Here, β
represents a real number proportional to the LO amplitude.
Performing this shift yields the master equation:

ρ̇ ¼ −i½H; ρ� þ
XN
k¼1

�
D
�
Ck þ iβffiffiffi

2
p

�
þD

�
Ck − iβffiffiffi

2
p

��
: ðD3Þ

The collapse operators ðCk þ iβÞ= ffiffiffi
2

p
and ðCk − iβÞ= ffiffiffi

2
p

correspond to measurements of the two field quadratures,
respectively. The Hamiltonian contribution from the two
above collapse operators cancel out up to a global constant
offset. The master equation is now unraveled into quantum
trajectories using the standard quantum jump formalism [6]
but with the above, shifted collapse operators. The extra
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field β means that the probability of a jump at each time
step is higher, but the form of the collapse operator means
that in such a jump, there is a smaller change to the state of
the system. As one interpolates between β ¼ 0 and β ¼ ∞,
this approach thus interpolates between quantum jumps
(in terms of the original jump operators) and continuous
quantum state diffusion.
The value of β used in our simulations is 0.1

ffiffiffi
κ

p
. Recall

that β corresponds to
ffiffiffi
κ

p
multiplied by the coherent

state amplitude of the LO and the overlap between the
LO and emitted cavity light. While this sounds small, the
relevant quantity for determining how close the system is
to the quantum state diffusion limit is the ratio of the
number of detections per unit time to the rate associated
with spin dynamics. The quantum state diffusion limit
occurs when detections occur much more quickly than
system dynamics.
The detection rate can be approximated for a given value

of β [6] by

XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λk

κωzg2

Δcg2c

�
β2

s
: ðD4Þ

The term in parentheses is the bare detection rate corre-
sponding to the kth collapse operator, where λk is the kth
eigenvector of J. The term β2 boosts the bare rate by the LO
strength. The sum is taken over all collapse operators to
approximate the total detection rate for each spin. This
yields a detection rate of approximately 2 MHz at full ramp
power when using typical J matrices in the spin glass
regime; this translates to a timescale of about 0.5 μs. On the
other hand, the spin dynamics typically occur no faster than
∼10 μs. Thus, we conclude that the dynamics are similar to
those obtained in the diffusion limit.
The measurement records for each spin are constructed

from the balanced homodyne signals. Balanced homodyne
records hkðtÞ measure the difference in the number of
jumps between ðCk þ iβÞ= ffiffiffi

2
p

and ðCk − iβÞ= ffiffiffi
2

p
as a

function of time. Each record is initialized as hkð0Þ ¼ 0.
Every time that a jump occurs in ðCk þ iβÞ= ffiffiffi

2
p

, hkðtÞ is
increased by one, while it is decreased by one every time a
jump occurs in ðCk − iβÞ= ffiffiffi

2
p

. The homodyne records
do not yet reflect the spin measurements because the
collapse operators Ck are composed of a linear combination
of spin operators from different sites. To construct the
spin measurements records siðtÞ, the relation between

homodyne records and spin states must be inverted by
taking the linear combination

siðtÞ ¼
XN
k¼1

vki hkðtÞ; ðD5Þ

where again vki is the ith element of the kth eigenvector of
the J matrix. The records siðtÞ now change at a rate
proportional to hSxi i, and thus, after sufficient integration
time, their signs indicate the steady-state spin configura-
tion. An example of the measurement records for a typical
quantum trajectory is shown in Fig. 1(b).

APPENDIX E: SEMICLASSICAL EQUATIONS
OF MOTION

We now derive the semiclassical equations of motion that
describe a homodyne unraveling of the master equation.
For these semiclassical calculations, we take the quantum
state diffusion limit appropriate for large spins [6,8],
corresponding to the limit β → ∞ in the previous appendix.
The stochastic differential equation describing the expect-

ation value of an observable A is written in Itô form as

dhAi ¼ ih½H;A�idt
þ
X
k

h
ð2hC†

kACki − hC†
kCkAi − hAC†

kCkiÞdt

þ
ffiffiffi
2

p
ðhC†

kAi − hC†
kihAiÞdWk

þ
ffiffiffi
2

p
ðhACki − hAihCkiÞdW�

k

i
; ðE1Þ

where eachdWk is the differential of an independent,Wiener
process with hdWkdW�

ki ¼ dt. The Wiener process can be
either real, for homodyne detection, or complex, for hetero-
dyne detection.We consider a realWiener process from here
on for simplicity and without loss of generality. The semi-
classical equations of motion are derived by first evaluating
the above exact equation forSx=y=zi and simplifying the result
through commutation relations. Any remaining product of
spin operators A and B is then decomposed into a commu-
tator and anticommutator,AB → ½A;B�=2þ fA;Bg=2. This
step is necessary to achieve a semiclassical limit that retains
stochastic terms from the homodyne detection. We then
perform a mean-field decoupling of the anticommutator
terms hfA; Bgi=2 → hAihBi to arrive at semiclassical equa-
tions of motion:

dhSxi i ¼ −
�
ωz þ Re½α−�

g2Jii
4ΔC

�
hSyi idtþ

g2hSzi i
2ΔC

XN
j¼1

Jij

�
Im½α−� −

κ

ΔC
Re½α�þα−�

�
hSxjidt

−
g2κJii
4Δ2

C
ðIm½α�þα−�hSyi i þ jα−j2hSxi iÞdtþ

g
ffiffiffi
κ

pffiffiffi
2

p
ΔC

hSzi i
XN
k¼1

ffiffiffiffiffi
λk

p
vkiRe½α−dWk�; ðE2Þ
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dhSyi i ¼
�
ωz þ Re½α−�

g2Jii
4ΔC

�
hSxi idtþ

g2hSzi i
2ΔC

XN
j¼1

Jij

�
2Re½αþ�hSxji −

�
Im½α−� þ

κ

ΔC
Re½α�þα−�

�
hSyji

�
dt

−
g2κJii
4Δ2

C
ðIm½α�þα−�hSxi i þ jαþj2hSyi iÞdt −

g
ffiffiffi
κ

pffiffiffi
2

p
ΔC

hSzi i
XN
k¼1

ffiffiffiffiffi
λk

p
vki Im½αþdWk�; ðE3Þ

dhSzi i ¼
g2

2ΔC

XN
j¼1

Jij

�
Im½α−�ðhSyi ihSyji − hSxi ihSxjiÞ þ

κ

ΔC
Re½α�þα−�ðhSxi ihSxji þ hSyi ihSyjiÞ − 2Re½αþ�hSyi ihSxji

�
dt

−
g2κJii
4Δ2

C
ðjαþj2 þ jα−j2ÞhSzi idtþ

g
ffiffiffi
κ

pffiffiffi
2

p
ΔC

XN
k¼1

ffiffiffiffiffi
λk

p
vki ðIm½αþdWk�hSyi i − Re½α−dWk�hSxi iÞ: ðE4Þ

Above, α� are as defined in Eq. (6).

APPENDIX F: PARISI DISTRIBUTION IN TERMS
OF QUANTUM TRAJECTORIES

Here, we first summarize the form of the Parisi distri-
bution in a quantum spin glass, following Refs. [64,65]. We
then show how it can be understood in terms of an overlap
operator in a doubled Hilbert space. This leads to the
trajectory formulation of the overlap distribution presented
in Eq. (11) of the main text.

1. Parisi order parameter for a quantum spin glass

For simplicity, we consider here the SK model in a
transverse field. It is a close approximation of the more
realistic model derived in Sec. II. The Hamiltonian is
given by

H ¼ −hq
XN
i¼1

σzi −
XN
i<j

Jijσxi σ
x
j ; ðF1Þ

where σx;y;zi are Pauli operators acting on one of the N total
spins. The Jij couplings here are all to all with each element
sampled independently from a Gaussian distribution with
zero mean and variance σ2J=N. We consider here the
equilibrium density matrix ρ ¼ e−H=T=Z with partition
function Z ¼ Tr½e−H=T �. Application of the Suzuki-
Trotter formula [45,46] allows for a reformulation of Z
in terms of an equivalent classical model in a higher
dimension. The classical energy is [47]

Eðs; JÞ ¼ −
1

L

XL
τ¼1

XN
i<j

Jijsi;τsj;τ − hc
XL
τ¼1

XN
i¼1

si;τsi;τþ1;

ðF2Þ

where s denotes the set of classical spin variables si;τ ¼ �1.
The term hc ¼ T ln½cothðhq=LTÞ�=2 describes a nearest-
neighbor coupling in the Trotter dimension indexed by τ,
with periodic boundary conditions. The mapping becomes

exact in the limit where L, the number of sites in the Trotter
dimension, tends to infinity.
Mapping the quantum partition function to an effective

classical partition function unlocks the tools of replica
theory. The free energy is evaluated via the “replica trick”
logðZÞ ¼ limn→0ðZn − 1Þ=n, reducing the problem to com-
puting the replicated partition function Zn for n replica spin
systems sα. The free energy is then averaged over the
quenched disorder matrices. This corresponds to the dis-
order-averaged, replicated partition function Zn given by

Zn ¼
Z YN

i<j

dJijpðJijÞ
X
fsαg

exp

	
−
1

T

Xn
α¼1

Eðsα; JÞ


; ðF3Þ

where pðJijÞ ¼ expð−NJ2ij=2σ
2
JÞ=

ffiffiffiffiffiffi
2π

p
σJ and the sum is

taken over all replica spin states. The disorder integrals
can be computed exactly, which introduces a coupling
between replicas. One finds that in the large-N limit the
partition function can be expressed in terms of a local
effective action with spins at different sites i decoupled,
Zn ¼ Q

i e
−Si . This gives a single-site action [64]:

Si ¼ −
σ2J

L2T2

XL
τ;τ0

�Xn
α<β

sαi;τs
β
i;τ0Qαβ þ

χτ−τ0

2

Xn
α¼1

sαi;τs
α
i;τ0

�

−
hc
T

XL
τ¼1

Xn
α¼1

sαi;τs
α
i;τþ1: ðF4Þ

The matrix Qαβ is the overlap order parameter that, after
performing the disorder average, describes a coupling
between replicas. The order parameter χΔτ is a replica-
diagonal correlator describing a translation-invariant cou-
pling in the Trotter dimension. Evaluation of Zn by the
method of steepest descent gives self-consistent equations
for these order parameters,

Qαβ ¼
1

N

XN
i¼1

hsαi;τsβi;τ0 iS; χτ−τ0 ¼
1

N

XN
i¼1

hsαi;τsαi;τ0 iS; ðF5Þ
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where hAiS ¼
P

fsαg Ae−S=ð
P

fsαg e−SÞ denotes an expect-
ation value over the measure defined by S. While the
overlap matrix may seem an abstract or purely theoretical
object, Parisi realized [3] that Qαβ contains clear physical
content: It describes the overlaps, or equivalently the
distances, between the large number of distinct thermody-
namic states in a single disorder realization. Finally, the
Parisi order parameter PðqÞ is the distribution of elements
of the Qαβ matrix:

PðqÞ ¼ lim
n→0

1

nðn − 1Þ
Xn
α≠β

δðQαβ − qÞ: ðF6Þ

The structure of PðqÞ [50,65] is modified in the quantum
case by a transverse field [47,66,67].

2. Parisi distribution from the overlap operator

To establish a connection between Qαβ as predicted by
replica theory and a physical observable of the quantum
system, we consider the moments qðkÞ ≡ R

dqPðqÞqk of the
Parisi distribution. Using Eq. (F6) yields

qðkÞ ¼ lim
n→0

1

nðn − 1Þ
Xn
α≠β

Qk
αβ: ðF7Þ

We now insert the self-consistency equation (F5) for Qαβ

and make use of the fact that different sites decouple in the
effective action, Eq. (F4). In the large-N limit, this yields

qðkÞ ¼ lim
n→0

1

nðn − 1ÞNk

Xn
α≠β

XN
i1���ik

�Yk
j¼1

sαij;τs
β
ij;τ0

�
S
:

The expectation value over the effective action S, in which
the disorder has been integrated out, is now related back to
expectation values at the level of individual disorder
realizations. Following Ref. [68], each distinct replica
index appearing in the expectation value under S corre-
sponds to a distinct thermal average under the classical
energy Eq. (F2). The result is then averaged to yield

qðkÞ ¼ ½qðkÞJ �J, where ½·�J denotes the disorder average over
J realizations and qðkÞJ is the moment associated with an
individual disorder realization, given by

qðkÞJ ¼ 1

Nk

XN
i1���ik

�Yk
j¼1

sij;τ

�
E

�Yk
l¼1

sil;τ0
�

E
: ðF8Þ

Here, h·iE denotes a thermal average with respect to the
classical energy in Eq. (F2). This can be related back to
quantum expectation values as hQj sij;τiE ¼ Tr½ρJ

Q
j σ

x
ij
�,

where ρJ is the equilibrium densitymatrix and the expression
holds for any choice of τ [47]. The key step is then to apply
the simple relation Tr½X�2 ¼ Tr½X ⊗ X�, yielding

qðkÞJ ¼ 1

Nk

XN
i1���ik

Tr

��
ρJ

Yk
j¼1

σxij

�
⊗

�
ρJ

Yk
l¼1

σxil

��

¼ Tr

�
ðρJ ⊗ ρJÞ

�
1

N

XN
i¼1

σxi ⊗ σxi

�k�
: ðF9Þ

The term in parentheses to the power k is precisely the
overlap operator O discussed in Eq. (9) of the main text,
leading to relation qðkÞ ¼ ½hOki�J.
The characteristic function φðtÞ for the overlap distri-

bution of each J is now straightforward to compute given
the above simple form for the moments. Direct evaluation
yields

φðtÞ ¼
X∞
k¼0

ðitÞkqðkÞ
k!

¼
�
Tr

�
ðρJ ⊗ ρJÞ

X∞
k¼0

ðitOÞk
k!

��
J

¼
h
Tr
h
ðρJ ⊗ ρJÞeitO

ii
J
: ðF10Þ

We obtain the overlap distribution through a Fourier
transform of the characteristic function. Performing the
disorder average then yields the Parisi distribution,

PðqÞ ¼
�
Tr

�
ðρJ ⊗ ρJÞ

Z
dt
2π

eitðO−qIÞ
��

J
; ðF11Þ

where I is the identity matrix in the matrix exponential.
The exponential term can be recognized as the integral
form of the Dirac delta function. To describe explicitly
the action of the delta function, we expand the overlap
operator in its eigenbasis as O ¼ P

q qPq, where the sum
runs over all N þ 1 allowed values of the spin overlap
q ¼ −1;−1þ 2=N;…; 1. The operators Pq are orthogonal
projections onto the space of spin state pairs with overlap q.
They mutually commute, ½Pq;Pq0 � ¼ 0, and have product
relations PqPq0 ¼ Pqδqq0 . Furthermore, the projectors span
the full space of spin states and thus form a resolution of the
identity, I ¼ P

q Pq. Inserting these forms into the integral
expression of Eq. (F11) and evaluating the operator
exponential, we find

Z
dt
2π

eitðO−qIÞ ¼
Z

dt
2π

exp

�
it
X
q0
ðq0 − qÞPq0

�

¼
X
q0

Z
dt
2π

exp ½itðq0 − qÞ�Pq0

¼
X
q0
δðq0 − qÞPq0 : ðF12Þ
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Inserting this form back into Eq. (F11) produces the form of
the overlap distribution presented in the main text:

PðqÞ ¼
X
q0
δðq − q0Þ½Tr½ðρJ ⊗ ρJÞPq0 ��J: ðF13Þ

APPENDIX G: BOOTSTRAP ERROR ANALYSIS

Error bars for overlap and magnetization distributions are
estimated via the bootstrap method [69]. Bootstrap samples
are constructed by sampling with replacement from the 200
quantum trajectories for each J matrix. For the magnetiza-
tion distributions, a bootstrap sample of 200 trajectories is
generated before computing the magnetization distribution

of the sample. The standard deviation across 100 bootstrap
samples is computed for each bin in the distribution to
provide an error estimate per bin.
Error estimates for overlap distributions are performed in

a different manner to avoid the inclusion of self-overlaps.
We choose this method since the self-overlap is not
included in any of the overlap distributions in the main
figures, which would contribute an asymmetric peak at
qαβ ¼ 1. Bootstrap samples for the overlap distribution are
thus generated by sampling pairs of trajectories, rather than
sampling single trajectories like we do for the magnetiza-
tion distribution. Each pair of trajectories produces a single
value of the overlap, which is then binned over all pairs in

FIG. 11. All 100 overlap distributions used in Fig. 8(a). The y axis is probability on a linear scale. The 100 J matrices used here may all
be realized using confocal cavities in the spin glass regime, as described in the main text.
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the bootstrap sample. The self-overlap is avoided by
sampling only pairs of two different trajectories. Note that
the 200 trajectories we simulate for each J matrix result in
200 × ð200 − 1Þ=2 ¼ 19900 distinct pairs of trajectories,
which each contribute to one value of the overlap distri-
bution. The number of pairs in the bootstrap samples are
chosen to match this number. The error estimate for each
bin in the overlap distribution is then computed by taking
the standard deviation across 100 bootstrap samples.

APPENDIX H: ALL OVERLAP DISTRIBUTIONS

Figure 11 presents all of the overlap distributions for
the 100 confocal J matrices in the spin glass regime.
Distribution 1 corresponds to the J matrix used for
Figs. 2–5. Distributions 2–4 are those presented in Fig. 7.
Distribution 5 corresponds to the J matrix considered in
Fig. 10(a). All 100 of the distributions are used to construct
the J-averaged Parisi distribution in Fig. 8(a).
A variety of shapes are observed. Many distributions

show interior support like peaks or a filling that is smooth.
Interior support occurs in the most glassy J matrices where
many nearly degenerate minima contribute to the low-
energy manifold. Others show less pronounced interior
structure. This occurs when the energy landscape is mostly
dominated by a single ground state with energy much lower
than any other local minimum. Even in these cases, there
are often signs of smaller structures in the interior region
arising from infrequently found local minima. This dis-
tinguishes the system from any ferromagnetic system,
where only two goalpost peaks emerge from the single
paramagnetic peak as the system cools.
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