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The Peierls instability toward a charge density wave is a canonical example of phonon-driven strongly
correlated physics and is intimately related to topological quantum matter and exotic superconductivity.
We propose a method for realizing an analogous photon-mediated Peierls transition, using a system of
one-dimensional tubes of interacting Bose or Fermi atoms trapped inside a multimode confocal cavity.
Pumping the cavity transversely engineers a cavity-mediated metal-to-insulator transition in the atomic
system. For strongly interacting bosons in the Tonks-Girardeau limit, this transition can be understood
(through fermionization) as being the Peierls instability. We extend the calculation to finite values of the
interaction strength and derive analytic expressions for both the cavity field and mass gap. They display
nontrivial power law dependence on the dimensionless matter-light coupling.
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Introduction.—The interaction between electrons and
phonons has traditionally played a leading role in the
formation of quantum phases of matter, with superconduc-
tivity being a prime example. Quantum simulation in
optical lattices provides an enticing platform for exploring
new phases [1], but phonon-driven physics lies beyond
traditional optical lattice capabilities, as they are externally
imposed and rigid. The use of high-finesse optical cavities
has been suggested as a route to overcome this by making
the optical lattice fully dynamical and compliant [2–4].
This requires cavities that support multiple degenerate
modes, as single-mode cavities only allow dynamics of
the lattice intensity, not its period. That is, while single-
mode cavities have provided access to a diverse array of
exotic quantum phenomena including self-organization [5],
supersolids [6], spinor density-wave polariton condensates
[7], dynamical Mott insulators [8,9], and dynamical spin-
orbit coupling [10], only multimode cavities support fully
emergent optical lattices whose amplitude and periodicity
may vary [2–4]. Multimode cavity experiments have
already engineered a variety of photon-mediated inter-
atomic interactions [11–14]. These could lead to the
creation of new many-body systems and states of matter
such as quantum liquid crystals made of photons and
superfluid atoms [3,4] and superfluids exhibiting Meissner-
like effects [15].
As we will show below, confocal multimode cavities

coupled to one dimensional (1D) quantum gases provide a
way to realize controllable electron-phonon-like inter-
actions using ultracold atoms. Other proposals for studying
this physics include coupling fermionic atoms to an optical

waveguide [16], or to a crystal of trapped ions [17]. One-
dimensional ultracold gases also allow one to explore
pairing physics with bosons, as resonant atomic collisions
provide a knob to make bosons strongly repel [18,19],
even to the point that they behave like fermions [20–22].
For such systems, the addition of attractive interactions
can cause dramatic effects. Indeed, for 1D systems, even
weakly attractive interactions result in instabilities leading
to strong correlations such that the quasiparticle picture
breaks down and collective modes emerge [23–25]. A
paradigmatic example is the Peierls instability that occurs
because the susceptibility of a free Fermi gas diverges due
to infinitesimal density perturbations at twice the Fermi
wave vector [26]. If free phonons exist, then it is possible
for the system to create an emergent lattice that matches this
wave vector. Because of the diverging susceptibility, the
system undergoes a metal-insulator transition and dynami-
cally generates a mass gap. The Peierls transition is a
canonical example of phonon-driven physics and is inti-
mately related to the continuum Su-Schrieffer-Heeger
(SSH) model of 1D topological insulators in 1D [27].
Numerical work has shown the analogue of a Peierls
transition for atoms in an optical lattice, where intersite
hopping of bosonic atoms is modulated by the spin state of
a second species of atoms [28].
In this Letter, we show that a Peierls instability occurs

in a strong, repulsively interacting 1D bosonic gas trapped
inside a transversely pumped confocal multimode optical
cavity. Building on demonstrated experimental capabilities
[12,13], we predict that, by tuning the interatomic inter-
actions to the hard-core, Tonks-Girardeau (TG) limit
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[29,30], the cavity can mediate a Peierls transition in the
bosonic gas, with a mass gap and photon amplitude that is
exponential in the matter-light coupling. By using boso-
nization, we then extend these calculations to finite values
of the interatomic interaction, as well as to interacting
fermionic systems. In agreement with Ref. [28], we show
that, in these cases, the cavity can mediate a metal-insulator
transition, albeit one of different character. Moreover, we
show that the dynamically generated mass gap and photon
amplitude have a nontrivial power law dependence on the
matter-light coupling. Self-organization of fermions in a
single-mode cavity has also been previously discussed,
theoretically [31–33], but here, the diverging susceptibility
requires the single cavity mode and Fermi wave vectors
to match. Experimentally, realizing a photon-mediated
Peierls transition would open new avenues toward explor-
ing the role of Fermi surface nesting and charge density
waves in exotic superconductors in simulators operating in
a quantum-optical, many-body context.
Model.—The system considered, depicted in Fig. 1,

consists of 1D tubes of atoms placed in a transversely
pumped confocal optical cavity. As already noted, multiple
optical modes are needed to allow a fully emergent optical
lattice. For true multimode operation, these modes must be
degenerate or near degenerate. A confocal cavity is the
simplest stable resonator allowing such degeneracy [34]. To
achieve a 1D trap geometry and uniform atom-cavity
coupling, we confine bosonic atoms in a strong λT-periodic
2D optical lattice formed by a retroreflected beam along the
ŷ pump direction and an intracavity standing wave along
the ẑ cavity axis. A pump field along ŷ has a wave vector kr
close to a cavity resonance. By choosing the tube-lattice
period such that krλT=2π is an integer, the tubes lie at the
peaks of the pump and cavity standing-wave fields so the
atoms coherently Bragg scatter light into the cavity. As a
result, in contrast to experiments on self-organization [35],

there is no spontaneous atomic organization in the yz plane;
rather, the atoms superradiantly emit into the cavity
regardless of pump strength. We choose the tubes to be
near the cavity midplane z ¼ 0, and the long Rayleigh
range of a confocal cavity ensures that the tubes at different
z will behave identically. In ŷ, we choose all tubes to be
centered at the same y since tubes at different y decouple, as
discussed in the Supplemental Material [36]. As such, we
will describe the atoms in tube t through a bosonic field
ΨtðxÞ, varying only along the free x direction. Degenerate
confocal cavities with Bose-Einstein condensates in optical
traps are practicable with existing technology [14].
We can write the Hamiltonian of the system as

follows [36]:

H ¼ Hcav þ
Z

dx
XNz

t¼1

�
Ψ†

t ðxÞ
�
−
ℏ2

2m
∂2
x − μ

�
ΨtðxÞ

þ UΨ†
t ðxÞΨtðxÞΨ†

t ðxÞΨtðxÞ − gΦðxÞρtðxÞ
�
: ð1Þ

The first term, Hcav ¼ ℏ
P

α;ν ωα;νa
†
α;νaα;ν, describes the

cavity photons, where ωα;ν is measured with respect to the
transverse pump frequency. We sum only over cavity
modes that are near resonant with the pump. Modes are
labeled by the longitudinal index α and transverse index ν.
The second and third terms describe atoms with mass m,
chemical potential μ, and a contact interaction of strength
U. We sum over an array of Nz tubes, labeled by t,
positioned in an array along ẑ. The last term describes the
coupling of the atomic density ρtðxÞ ¼ Ψ†

t ðxÞΨtðxÞ to the
cavity photons, as induced by the pump. This term
describes how the atomic density scatters photons between
the transverse pump and the cavity modes. As described in
Ref. [36], this term can be derived by adiabatically
eliminating excited states of the atoms, yielding an effective
ac light shift. The photon field is written as a sum over
cavity modes ΦðxÞ ¼ P

α;ν c
α
ν Ξ̃νðxÞða†α;ν þ aα;νÞ. The

transverse mode functions Ξ̃νðxÞ are found by taking the
eigenmodes of the cavity—Gauss-Hermite functions of
order ðlν; mνÞ in the x and y directions, respectively—and
convolving these with the Gaussian tube profile in the y
direction; see Ref. [36]. The factors cαν come from the
longitudinal spatial mode profile evaluated at the atom
positions, and are discussed below. As noted above, this
final term is a source for cavity photons independent of the
density profile ρtðxÞ—the λ − T tube spacing causes atoms
to coherently scatter the pump into the cavity with intensity
∝ N2

z [40]. The prefactor g ¼ ℏg0Ω=Δa is the effective
matter-light coupling where g0 is the bare coupling, Ω the
pump Rabi frequency, and Δa is the pump-atom detuning.
As the Gauss-Hermite functions form a complete basis

set, one might expect that ΦðxÞ could take any spatial
profile. This would allow the cavity light to match the

FIG. 1. Schematic of our system. A gas of interacting atoms is
placed in a confocal optical cavity that supports many degenerate
spatial modes. A transverse pump (blue) along ŷ scatters photons
off the atoms (red) into the multimode cavity field (blue). The gas
is confined by a 2D optical lattice (purple) and offset from y ¼ 0
to avoid mirror-image interactions [12]. The amplitude and phase
of the light is imaged via holographic reconstruction of a spatial
heterodyne signal formed by interfering part of the pump with the
emission.

PHYSICAL REVIEW LETTERS 125, 010404 (2020)

010404-2



atomic density, inducing a local interaction. There are
complications however. First, while transverse modes
become degenerate at confocal resonances of the cavity,
they do so in alternating odd and even families, set by the
parity of nμ ¼ lμ þmμ. We assume even nμ hereon.
Second, the factors cαν modify the sum over modes. As
shown in Ref. [13], the longitudinal mode profile assumes a
form cαν ¼ cos ðξα − πnν=4Þ, where ξα depends on which
family we consider. This includes the effects of the Gouy
phase [34], leading to an nν dependence. If we consider
the special case where ξα is a multiple of 2π, we then see
that for successive even nμ, the factor cαν is sequentially
1; 0;−1, 0. The missing Gauss-Hermite functions prevent
ΦðxÞ from obtaining an arbitrary form; equivalently, this
yields a nonlocal photon-mediated interaction. This can be
nulled by using two pumps resonant with families ξα ¼ 0
and π=2, yielding a local interaction [13].
Both the matter-light coupling g and interatomic inter-

action strength U are experimentally tunable parameters [1].
In particular, the system may be tuned into the TG regime,
i.e., γ ≡mU=ℏ2ρ0 → ∞, using tight trapping and collisional
resonances, where ρ0 is the average 1D density [20,21]. The
atoms behave like free fermions in this limit [29,30] and, so,
will exhibit a Peierls instability. Even strongly repulsive
bosons away from the TG limit exhibit this instability.
Steady state.—We investigate the Peierls instability using

a mean-field description of the photon field. Therefore, we
consider the equations of motion for the expectation of
photon operators

h _a†α;νi ¼ ðiωα;ν − κÞha†α;νi − i
g
ℏ

X
t

Z
dxcαν Ξ̃νðxÞhρtðxÞi;

ð2Þ
where we have included a term ∝ κ accounting for cavity
losses. Assuming a steady state, the mean field is

hΦðxÞi ¼
Z

dx0
X
α;ν;t

2gωα;νðcανÞ2
ℏðω2

α;ν þ κ2Þ Ξ̃νðxÞΞ̃νðx0Þhρtðx0Þi: ð3Þ

For simplicity, we consider the perfectly degenerate
limit ωα;ν ¼ ω. Pumping two families as discussed above,P

αðcανÞ2 ¼ 1, allowing for the explicit evaluation of the sum
over modes:

P
ν Ξ̃νðxÞΞ̃νðx0Þ ¼ ½w2

0=ð2
ffiffiffiffiffiffi
4π

p
σTÞ�δðx − x0Þ

[41]. Here, σT is the transverse width of an individual tube,
w0 is the beam waist, and we made a simplifying assumption
that the tubes are in the upper half of the cavity, y > 0, to
avoid mirror-image interactions [12]. As all tubes behave
identically, we can insert this into Eq. (3) to give

ghΦðxÞi ¼ πℏvFηhρðxÞi; η≡ g2Nzωw2
0ffiffiffiffiffiffi

4π
p

σTπℏ2vFðω2 þ κ2Þ ;

ð4Þ

where we have defined the dimensionless matter-light
coupling η and vF ¼ πℏρ0=m is the Fermi velocity in the
TG limit. Later, it will be convenient to parametrize this as
hΦðxÞi≡Φ0ðxÞ þΦ2πρ0ðxÞ½e2iπρ0x þ e−2iπρ0x� and, also,
introduce the quantity Δ≡ jgΦ2πρ0 j. The atoms will coher-
ently scatter light into the cavity, so any nonzero density of
atoms implies hΦi ≠ 0. We will find that Φ2πρ0ðxÞ becomes
nonzero at the Peierls transition, leading to the dynamical
generation of a mass gap.
Adiabatic elimination of photons from our model at

the mean-field level leads to completely conservative
dynamics—this is a generic feature of a Rabi-like mat-
ter-light coupling [42]. The resulting conservative dynam-
ics is determined entirely by an effective Hamiltonian,Heff ,
and so, the steady-state condition becomes equivalent to
minimizing this with respect to the mean field Δ. The
atomic and atom-cavity coupling parts of Heff come from
substituting Eq. (4) into Eq. (1) (considering a single
tube), while the cavity part can be written as
Heff

cav ¼ ðg2=2πℏvFηÞ
R
dxhΦðxÞi2. We consider only con-

stant values of Φ0 and Φ2πρ0 , in which case Φ0 can be
absorbed into a redefinition of the chemical potential, μ.
Henceforth, we shall deal only with Φ2πρ0 .
Low energy and bosonization.—The atomic system

can be described using bosonization, which provides us
with a description of our system in terms of two new
bosonic fields, ϕðxÞ and its canonical conjugate ∂xθðxÞ
[23,24,43,44]. The former is related to the atomic density
via ρðxÞ ¼ ½ρ0 − ð1=πÞ∂xϕðxÞ�

P∞
n¼−∞ e2in½πρ0−ϕðxÞ�, while

the latter is related to the current in the system [44]. In terms
of these, the steady-state condition Eq. (4) reduces to
gΦ2πρ0 ¼ 2πℏvFηρ0hcos½2ϕðxÞ�i. As such, the effective
mean-field Hamiltonian discussed above can be written
in terms of the bosonized fields as

Heff ¼ Heff
cav þ

ℏvF
2π

Z
dx

�
1

K2
½∂xϕðxÞ�2 þ ½∂xθðxÞ�2

�

� 2Δ
Z

dxρ0 cos ½2ϕðxÞ�: ð5Þ

The first line describes the atomic and cavity systems, using
the standard result for bosonization of the atoms. The
atomic interactions are encoded via the parameter K which
depends on U in a complicated fashion [45]. For large
repulsive interactions, this relationship can be approxi-
mated by K ≈ 1þ 4=γ, with the TG limit achieved at
K ¼ 1, while K ¼ ∞ corresponds to free bosons [45]. The
second line describes the relevant part of the matter-light
coupling and will generate a gap. We have allowed for the
possibility that the matter-light coupling and photon field
might carry opposite signs, and we keep only terms which
are most relevant in a renormalization group sense, which
restricts our analysis to values 1=2 < K < 2.
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While, in the present work, our primary system of
interest is bosons with short-range, repulsive interactions,
bosonization also allows one to describe the low-energy
physics of bosons with long-range interactions or interact-
ing fermions [23,24,46]. Such systems are described by a
Luttinger parameter 0 < K < 1, and so, in the following,
we allow for arbitrary values of 1=2 < K < 2. Results for
K > 1 are applicable to bosons with short-ranged inter-
actions or fermions with attractive interactions, whereas
K < 1 corresponds to 1D repulsive fermions or bosonic
systems with long-range interactions, the latter of which
has been realized in Refs. [47,48].
Tonks-Girardeau limit.—The atoms behave as free

fermions in the TG limit [29,30]. This is evident in our
low-energy description at K ¼ 1, where it is possible to
express the bosonic operators as a pair of chiral fermions.
In terms of these, the low-energy Hamiltonian Eq. (5)
becomes the 1D Dirac Hamiltonian with a mass �Δ
[36,49] that is subject to the steady state condition. This
system is the same as the SSHmodel [27] whose solution is
well known. Carrying it over to the present case, we find
that Δ ¼ 2EFe−1=η, where EF ¼ πℏvFρ0 is the Fermi
energy. Therefore, the self-consistent photon field is
given by

hΦðxÞi ¼ � 4EF

g
e−1=η cos ð2kFxÞ: ð6Þ

The atomic system is insulating with a mass gap of 2Δ. The
applicability of the low-energy description relies on EF
being the largest scale in the system. In particular, we
require that Δ < EF, which in turn requires η < 1.
Finite interaction.—The system is quite different for

K ≠ 1. It is strongly correlated and interacting, but can no
longer be mapped to the SSHmodel. Nevertheless, an exact
solution for the steady state can be found, although the
cases of positive and negative gΦ2πρ0 need to be treated
separately; below, we will find that these correspond to
K > 1 and K < 1, respectively. For gΦ2πρ0 < 0, the atomic
part of the Hamiltonian is that of the Sine-Gordon or
massive Thirring model with a positive mass term
[23,24,43]. This is an exactly solvable field theory, and
many of its properties are well known [50,51]. In particular,
the mass gap of the model becomes renormalized due
to the interactions, Δþ

R ¼ ξþEF½Δ=EF�1=ð2−KÞ, with ξþ a
K-dependent constant provided in Ref. [36]. Using this, we
derive the following steady-state condition from which to
determine Φ2πρ0 :

Δ
EF

¼ −η
πξ2þ
2

cot

�
π

2 − K

��
Δ
EF

� K
2−K

: ð7Þ

This has a solution only for K < 1. Rearranging, we find
that the self-consistent photon field and mass gap are

hΦðxÞi ¼ −
2EF

g
ζþη

2−K
2−2K cos ð2πρ0xÞ; ð8Þ

Δþ
R ¼ ξþEF½ζþη� 1

2−2K; ð9Þ

where ζþ is given in Ref. [36]. The amplitude of the photon
field now has a power law rather than the exponential
dependence on η in the TG limit. Furthermore, the
exponent differs from that appearing in the mass gap.
The TG limit K → 1 cannot be recovered from the above
expression and must be treated separately as in the previous
section. This highlights the strong correlations in the
interacting system. The photon field oscillates at wave
vector 2πρ0, which is 2K times kF.
The model maps to the massive Thirring model for

gΦ2πρ0 > 0, but with a negative mass parameter. As
explained in Ref. [36], this change in sign of the mass
term results in the spectrum of the model being inverted;
i.e., the ground state becomes the highest excited state [36].
Spectral inversion also occurs when changing the sign of
the interactions—i.e., taking K → 1=K. Combining these,
we find that for gΦ2πρ0 > 0 and K > 1, the renormalized
mass gap and self-consistent photon field are

hΦðxÞi ¼ 2EF

g
ζ−η

2K−1
2K−2 cos ð2πρ0xÞ; ð10Þ

Δ−
R ¼ EFξ−½ζ−η� K

2K−2; ð11Þ

where ξ−; ζ− are related to ξþ; ζþ by K → 1=K.
Experimental signatures.—One may image the atomic

density profile by using the spatial resolving power of the
degenerate cavity. This provides a direct signature of the
Peierls instability as a density wave. Figure 2 shows this,
calculated using results from Ref. [13]. The spatial modu-
lation of the light amplitude from the atomic image is a
signature of the Peierls transition; a mirror image appears
at −yt. The geometry of the confocal cavity conveniently
provides both the emission of the atomic density image
(long thin tubes) and its Fourier transform (vertical stripes)
[13]. Thus, a density modulation of wave vector 2k results
in Bragg peaks manifest as vertical stripes. These are
positioned at x ¼ �kw2

0. (Each stripe is the Fourier trans-
form of the ŷ-displaced atom image.)
The power-law scaling between the oscillation amplitude

of the detected light and the parameter η depends critically
on the atom interactions; see Eq. (8). Thus, the Luttinger
parameter K can be experimentally measured through the
dependence of this exponent on η. This can be tuned
through its dependence on the pump intensity η ∝ g2 ∝ Ω2

or by the cavity-pump detuning ω.
Probing the system by stimulating a particular photon

mode realizes cavity-enhanced Bragg spectroscopy [52]. In
a degenerate cavity, the probe field profile can be tailored
with holographic beam shaping to have a particular wave
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vector. Thus, dynamic susceptibility can be measured as a
function of k and excitation energy by also tuning the
detuning between the probe and pump. The response of the
system manifests as an increase in photon population,
allowing the gap Δ�

R to be measured.
In conclusion, we have shown that multimode confocal

cavities can be used to realize the Peierls transition for both
Bose and Fermi gases. Away from the simple limits of
noninteracting fermions or TG bosons, the scaling of the
detected light field with pump strength can be used to
measure the Luttinger parameter. Looking beyond Peierls
transitions, the compliant, phonon-supporting optical lat-
tices inherent in multimode cavity QED make accessible
a wider variety of many-body physics explorable in the
context of quantum simulation.
Data sharing is not applicable to this article as no datasets

were generated or analyzed during the current study.

This work was supported by US-ARO Contract
No. W911NF1310172 and Simons Foundation (V. G.),
NSF DMR-1613029 (C. R. and V. G.), and US-ARO
Contract No. W911NF1910262 (B. L.). Y. G. acknowl-
edges funding from the Stanford Q-FARM Graduate
Student Fellowship.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[2] M. Lewenstein, A. Kubasiak, J. Larson, C. Menotti, G.
Morigi, K. Osterloh, and A. Sanpera, Travelling to exotic
places with ultracold atoms, AIP Conf. Proc. 869, 201
(2006).

[3] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Emergent
crystallinity and frustration with Bose–Einstein condensates
in multimode cavities, Nat. Phys. 5, 845 (2009).

[4] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Atom-
light crystallization of Bose-Einstein condensates in multi-
mode cavities: Nonequilibrium classical and quantum phase
transitions, emergent lattices, supersolidity, and frustration,
Phys. Rev. A 82, 043612 (2010).

[5] P. Domokos and H. Ritsch, Collective Cooling and Self-
Organization of Atoms in a Cavity, Phys. Rev. Lett. 89,
253003 (2002).
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(horizontal blue pattern) and its Fourier transform (vertical blue
and orange patterns). These can be measured by holographic
reconstruction of a spatial heterodyne image [7,14]. The scale bar
in (a) shows the Gaussian waist w0 of the cavity.

PHYSICAL REVIEW LETTERS 125, 010404 (2020)

010404-5

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1063/1.2400650
https://doi.org/10.1063/1.2400650
https://doi.org/10.1038/nphys1403
https://doi.org/10.1103/PhysRevA.82.043612
https://doi.org/10.1103/PhysRevLett.89.253003
https://doi.org/10.1103/PhysRevLett.89.253003
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21067
https://doi.org/10.1103/PhysRevLett.121.163601
https://doi.org/10.1103/PhysRevLett.115.230403
https://doi.org/10.1103/PhysRevLett.115.230403
https://doi.org/10.1038/nature17409
https://doi.org/10.1103/PhysRevLett.123.160404
https://doi.org/10.1103/PhysRevLett.123.160404
https://doi.org/10.1088/1367-2630/17/4/043012
https://doi.org/10.1088/1367-2630/17/4/043012
https://doi.org/10.1103/PhysRevX.8.011002
https://doi.org/10.1103/PhysRevA.99.053818
https://doi.org/10.1103/PhysRevA.99.053818
https://doi.org/10.1103/PhysRevLett.122.193601
https://doi.org/10.1103/PhysRevLett.122.193601
https://doi.org/10.1103/PhysRevLett.118.045302
https://doi.org/10.1038/s42005-019-0149-1
https://doi.org/10.1038/s42005-019-0149-1
https://doi.org/10.1103/PhysRevLett.111.080501
https://doi.org/10.1103/PhysRevLett.111.080501
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225


[19] E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsöllner,
V. Melezhik, P. Schmelcher, and H.-C. Nägerl, Confine-
ment-Induced Resonances in Low-Dimensional Quantum
Systems, Phys. Rev. Lett. 104, 153203 (2010).

[20] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Flling, I.
Cirac, G. Shlyapnikov, T. Haensch, and I. Bloch, Tonks-
Girardeau gas of ultracold atoms in an optical lattice, Nature
(London) 429, 277 (2004).

[21] T. Kinoshita, T. Wenger, and D. Weiss, Observation of a
one-dimensional Tonks-Girardeau gas, Science 305, 1125
(2004).

[22] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart,
G. Pupillo, and H.-C. Nägerl, Realization of an excited,
strongly correlated quantum gas phase, Science 325, 1224
(2009).

[23] T. Giamarchi, Quantum Physics in One Dimension,
International Series of Monographs on Physics (Clarendon
Press, Oxford, England, 2003).

[24] A. Gogolin, A. Nersesyan, and A. Tsvelik, Bosonization
and Strongly Correlated Systems (Cambridge University
Press, Cambridge, England, 2004).

[25] A. M. Tsvelik, Quantum Field Theory in Condensed Matter
Physics, 2nd ed. (Cambridge University Press, Cambridge,
England, 2003).

[26] R. Peierls, Quantum Theory of Solids, International Series
of Monographs on Physics (Clarendon Press, Oxford,
England, 1996).

[27] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in
Polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).

[28] D. González-Cuadra, P. R. Grzybowski, A. Dauphin, and M.
Lewenstein, Strongly Correlated Bosons on a Dynamical
Lattice, Phys. Rev. Lett. 121, 090402 (2018).

[29] L. Tonks, The complete equation of state of one, two and
three-dimensional gases of hard elastic spheres, Phys. Rev.
50, 955 (1936).

[30] M. Girardeau, Relationship between systems of impen-
etrable bosons and fermions in one dimension, J. Math.
Phys. (N.Y.) 1, 516 (1960).

[31] J. Keeling, M. J. Bhaseen, and B. D. Simons, Fermionic
Superradiance in a Transversely Pumped Optical Cavity,
Phys. Rev. Lett. 112, 143002 (2014).

[32] F. Piazza and P. Strack, Umklapp Superradiance with a
Collisionless Quantum Degenerate Fermi Gas, Phys. Rev.
Lett. 112, 143003 (2014).

[33] Y. Chen, Z. Yu, and H. Zhai, Superradiance of Degenerate
Fermi Gases in a Cavity, Phys. Rev. Lett. 112, 143004 (2014).

[34] A. E. Siegman, Lasers (University Science Books, Sausa-
lito, CA, 1986).

[35] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
The Dicke quantum phase transition with a superfluid gas in
an optical cavity, Nature (London) 464, 1301 (2010).

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.010404 for

information on the origin of the effective Hamiltonian,
details of the calculation of the Ground state and solution of
the self-consistency equation, and discussion of realistic
experimental parameters, which includes Refs. [37–39].

[37] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger,
Cold atoms in cavity-generated dynamical optical poten-
tials, Rev. Mod. Phys. 85, 553 (2013).

[38] M. Takahashi, Thermodynamics of One-Dimensional Solv-
able Models (Cambridge University Press, Cambridge,
England 1999).

[39] H. B. Thacker, Exact integrability in quantum field theory
and statistical systems, Rev. Mod. Phys. 53, 253 (1981).

[40] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre,
Introduction to the Dicke model: From equilibrium to
nonequilibrium, and vice versa, Adv. Quantum Technol.
2, 1800043 (2019).

[41] See Ref. [13] for a near-degenerate case where the inter-
action becomes finite in range;Peierls physics remains the
same as long as the interaction range is less than the
intertube spacing.

[42] F. Damanet, A. J. Daley, and J. Keeling, Atom-only de-
scriptions of the driven-dissipative Dicke model, Phys. Rev.
A 99, 033845 (2019).

[43] S. Coleman, Quantum sine-Gordon equation as the massive
Thirring model, Phys. Rev. D 11, 2088 (1975).

[44] F. D. M. Haldane, Effective Harmonic-Fluid Approach to
Low-Energy Properties of One-Dimensional Quantum
Fluids, Phys. Rev. Lett. 47, 1840 (1981).

[45] M. A. Cazalilla, Bosonizing one-dimensional cold atomic
gases, J. Phys. B 37, S1 (2004).

[46] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, One dimensional bosons: From condensed matter
systems to ultracold gases, Rev. Mod. Phys. 83, 1405
(2011).

[47] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol,
S. Gopalakrishnan, and B. L. Lev, Thermalization near
Integrability in a Dipolar Quantum Newton’s Cradle,
Phys. Rev. X 8, 021030 (2018).

[48] W. Kao, K.-Y. Li, K.-Y. Lin, S. Gopalakrishnan, and B. L.
Lev, Creating quantum many-body scars through topologi-
cal pumping of a 1D dipolar gas, arXiv:2002.10475.

[49] A. Luther and V. J. Emery, Backward Scattering in the One-
Dimensional Electron Gas, Phys. Rev. Lett. 33, 589 (1974).

[50] H. Bergknoff and H. B. Thacker, Structure and solution of
the massive Thirring model, Phys. Rev. D 19, 3666 (1979).

[51] A. B. Zamolodchikov and A. B. Zamolodchikov, Factorized
S-matrices in two dimensions as the exact solutions of
certain relativistic quantum field theory models, Ann. Phys.
(N.Y.) 120, 253 (1979).

[52] R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner,
and T. Esslinger, Roton-type mode softening in a quantum
gas with cavity-mediated long-range interactions, Science
336, 1570 (2012).

PHYSICAL REVIEW LETTERS 125, 010404 (2020)

010404-6

https://doi.org/10.1103/PhysRevLett.104.153203
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.121.090402
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1103/PhysRevLett.112.143002
https://doi.org/10.1103/PhysRevLett.112.143003
https://doi.org/10.1103/PhysRevLett.112.143003
https://doi.org/10.1103/PhysRevLett.112.143004
https://doi.org/10.1038/nature09009
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.010404
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.53.253
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevA.99.033845
https://doi.org/10.1103/PhysRevA.99.033845
https://doi.org/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevLett.47.1840
https://doi.org/10.1088/0953-4075/37/7/051
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/PhysRevX.8.021030
https://arXiv.org/abs/2002.10475
https://doi.org/10.1103/PhysRevLett.33.589
https://doi.org/10.1103/PhysRevD.19.3666
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1126/science.1220314
https://doi.org/10.1126/science.1220314

