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We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above
quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the
postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating
Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results
extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases.
Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a
Feshbach resonance, through observation of thermal gas expansion.
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Expansion imaging of a gas of atoms or molecules after it
has been released from a trap provides a simple and highly
valuable experimental tool for probing ultracold gases. For
example, the technique is routinely used for thermometry by
measuring the rate of gas expansion as it falls. The well-
established procedure relies on the isotropic expansion of a
thermal gas in which the interactions are negligible.
Crucially, deviations from this isotropic behavior can provide
a signature of the underlying interactions (and other complex
phenomena) within the gas. Two notable examples of
such deviation, caused by interacting systems confined in
anisotropic traps, involve an aspect ratio (AR) inversion in
nondipolar Bose-Einstein condensates (BEC) due to mean-
field (MF) pressure forces arising from contact interactions
[1,2] and in thermal Bose [3] and degenerate Fermi gases [4]
in the collisional-hydrodynamic regime. Both effects alter
the time-of-flight (TOF) dynamics and require a theoretical
analysis to be understood [5]. The case of dipolar gases is
more complicated since the anisotropy of the interaction also
contributes to theTOFAR[6–8].No theory exists for thermal
dipolar Bose gas expansion even though such a theory is
crucial for accurate thermometry.
In this Letter, we report on the anisotropic expansion of

thermal bosonic 162Dy and 164Dy gases [9] and infer the
temperature and scattering length from the TOF anisotropy.
We find that the dominant physical mechanism responsible
for the anisotropy comes from interatomic collisions
which partially rethermalize the gas during the TOF. Non-
negligible contributions arise also from Hartree-Fock
mean-field interactions and Bose-enhancement factors. In
particular, the resulting theory allows us to characterize the
background scattering length and width of the 5.1-G
Feshbach resonance in 162Dy [10].
Our results pave a way toward investigations of ultracold

gases in nontrivial regimes of classical fluid dynamics [11]

where atomic collisions give rise to viscosity and turbu-
lence [12]. Anisotropic dipolar interactions lead to a
magnetoviscosity which has been studied in the context
of classical ferrofluids in archetypal situations involving
capillary flow [13]. While quantum ferrofluidity below
condensation temperature Tc has been explored in Cr BECs
[6], magnetoviscosity of dipolar Bose systems in the
intermediate ultracold regime above Tc has yet to be
explored. Such a regime is particularly relevant within
the context of future progress toward connecting classical
[12] and quantum [14] regimes of turbulence. It is therefore
of fundamental interest that, in contrast to alkali atoms and
Cr, this regime is accessible in these ultracold dysprosium
gases with unsurpassed magnetic moment μ ¼ 10μB (Bohr
magnetons).
Strongly dipolar lanthanide gases such as Dy and Er have

additional complications associated with extremely dense
spectra of Feshbach resonances revealed by atom-loss
spectroscopy [10,15–17]. Such measurements provide
the location, B0, of individual resonances and have stimu-
lated statistical studies on their distribution [16,18].
However, atom-loss spectroscopy alone cannot measure
the resonance width ΔB [19], the remaining parameter that
is required for quantitative control over the scattering
length. To obtain ΔB, scattering lengths near a resonance
must be measured. We demonstrate a particularly simple
way of doing so by using fits of the thermal-gas AR
expansion to our theory; a related technique was demon-
strated for dipolar BECs [20].
We prepare ultracold gases of 162Dy and 164Dy following

procedures described in Ref. [21]. In short, we perform
laser cooling in two magneto-optical-trap stages, followed
by forced evaporative cooling in a crossed optical dipole
trap (ODT) formed by two 1064-nm lasers. During the
evaporation, the magnetic field is along the z axis (along
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gravity) and at a Feshbach resonance-free value of B ¼
1.580ð5Þ G [22]. To measure the AR in TOF of the gas, we
suddenly turn off the trap and image the gas along the y axis
after 16 ms using absorption imaging. We then fit the atomic
density to a 2D-Gaussian function to extract the gas size σx
and σz along x̂ and ẑ [23]. The gas AR is defined as σz=σx.
The dipolar thermal Bose gas used in our experiment

consists of N ¼ 1.4ð1Þ × 105 atoms for 162Dy and
1.2ð1Þ × 105 for 164Dy. The atoms are prepared in the
jJ ¼ 8; mJ ¼ −8i ground state. To study the temperature
dependence of theAR,we prepare the same number of atoms
in the same trap but at different temperatures: First the gas is
evaporated close to degeneracy, then the trap depth is
increased, and finally we parametrically heat the gas to
the desired temperature by modulating the ODT power.
Before releasing thegas for TOF imaging,we let it thermalize
in the trap for 1 s, which is much longer than the few-ms
thermalization time scale [24]. The final trap frequencies are
½ωx;ωy;ωz% ¼ 2π × ½107ð1Þ; 49ð5Þ; 266ð1Þ% Hz for both
isotopes. We note that this oblate trap geometry, where the
confinement is the strongest along the magnetic field
orientation ẑ, is necessary to avoid dipolar mechanical
instabilities when evaporating towards Tc [25].
The measured gas AR at different temperatures are shown

in Fig. 1. The errors include both statistical and systematic
uncertainty and are dominated by systematic error, whichwe
estimate to be 1% [26].Wemeasure an anisotropy as large as
9%for 162Dyat 200nK—just belowTc—with the field along
ẑ. The anisotropydecreaseswithhigher temperature, orwhen
the magnetic field points along the imaging axis ŷ, such
that the dipolar interaction is symmetric in the imaged x-z
plane. The same trend is evident for 164Dy but with overall
smaller anisotropy. This field dependence indicates that
dipolar physics is at least partially responsible for the
anisotropic expansion dynamics, along with the isotope

dependence due to different scattering lengths [24], as we
now explain.
Our starting point is the known phase-space distribution

function of a classical noninteracting gas during expan-
sion fðr;p; tÞ ¼ fxðx; px; tÞfyðy; py; tÞfzðz; pz; tÞ, where
fiðri;pi; tÞ∝ exp½−p2

i =2mkBT−mω2
i ðri−pit=mÞ2=2kBT%.

The spatial size along direction i evolves according to
σiðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mω2

i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

i t
2

p
, and in the limit ωit ≫ 1,

we have σiðtÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
t leading to the isotropic shape in

the long-time limit and reflecting the isotropic momentum
distribution in the trap. Even in the presence of interactions,
the rapidly decreasing density means that the expansion
becomes ballistic, and therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2

zi=hp2
xi

p
determines

σz=σx after a long TOF.We estimate the finite-t correction to
σz=σx from the noninteracting case; it scales as 1=t2, and for
our parameters it does not exceed 0.5%. Nevertheless, we
take this effect into account.
The strategy for calculating hp2

i i relies on a perturbative
treatment. We write hp2

i i ¼ mkBT þ Δhp2
i i, where mkBT

comes from the zeroth-order distribution function fðr;p; tÞ
and Δhp2

i i takes into account interaction and statistical
effects. The mean-field (MF) contribution to the kinetic
energy Δhp2

i iMF=2m equals work done by the ith compo-
nent of the gradient of the MF interaction averaged over
fðr;p; tÞ. This MF part contains the contact term, propor-
tional to the scattering length a, and the dipole-dipole term,
proportional to the dipole length ad ¼ μ0μ2m=8πℏ2 [29],
where μ0 is the vacuum permeability. We find

Δhp2
i iMF ¼

2Nℏ2ω̄3m3=2

ðkBTÞ3=2
fad½H

ðiÞ
d þFðiÞ

d %þa½HðiÞ þFðiÞ%g;

ð1Þ

where ω̄ ¼ ðωxωyωzÞ1=3 and the dimensionless constantsH,
Hd, F, and Fd, given explicitly in Ref. [26], are functions of
the trap aspect ratios. These letters stand for the Hartree and
Fock contributions, respectively. In addition, the dipole parts
Hd andFd depend on the field orientation [26]. Anisotropies
due to theMF terms only are shown as dashed lines in Fig. 1.
While the MF interaction is significant, it is not sufficient to
match the level of anisotropy observed in our system.
We find that a more important contribution to the AR,

independent of the MF term at leading order, is the thermal-
ization during the TOF in which the kinetic energy is
transferred from hp2

i i=2m to hp2
ji=2m by two-body colli-

sions. In order to understand this phenomenon, we first point
to the kinematic effect which occurs in the noninteracting gas
and which can be seen from fðr;p; tÞ: during expansion the
thermal motion of particles is transferred to the directed
motion characterized by the finite average velocity with
components hvii ¼ riω2

i t=ð1þ ω2
i t

2Þ. Important for us is
that in the reference framewhere the gas is locally stationary,
its momentum distribution is equivalent to that of a thermal

FIG. 1. Measured gas AR after 16 ms of TOF for 162Dy in (a)
and 164Dy in (b). In both (a) and (b), red is for magnetic field
along ẑ and blue is for ŷ. Points are data with 1σ total error:
statistical plus 1% systematic [26]. Solid red and blue curves are
calculated using the full theory with the best-fit scattering lengths.
Dashed curves are calculated for only the MF effect with the best-
fit scattering lengths found using the full theory. Horizontal solid
gray line marks unity AR and vertical gray line marks Tc.
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gas with anisotropic temperature T=ð1þ ω2
i t

2Þ [26].
Collisions try to establish thermal equilibriumby transferring
kinetic energy more frequently, on average, from “hotter”
directions (smaller ωi) to “colder” ones (larger ωi). We call
this effect hydrodynamic (HD), although the collision rate is
too low to continuously maintain thermal equilibrium during
expansion. The corresponding contribution toΔhp2

i i is linear
in the scattering cross section, i.e., quadratic in a and ad,

Δhp2
i iHD¼ 2Nm2a2dω̄
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where the dimensionless constants A and B are functions of
the trap aspect ratios [26]. The first line in the right-hand side
of Eq. (2) describes the two-body collisional effects using the
differential cross sections obtained in the first-order Born
approximation [26,30]. Previous work on inelastic dipolar
collisions has shown the first-orderBorn approximation to be
valid in strongly dipolar systems like dysprosium [31].
The last line in Eq. (2) accounts for the quantum effects

on two-body collisions, where the probability of a scatter-
ing event is Bose enhanced according to the local phase-
space density. This effect should be distinguished from the
deviation of the in situ Bose-Einstein momentum distribu-
tion from the Maxwell-Boltzmann one. To first order in the
degeneracy parameter, the in situ Bose-Einstein deviation is
Δhp2

i iBE ¼ mkBTðN=16Þðℏω̄=kBTÞ3. It does not introduce
any anisotropy to the gas AR, but it is important for the
accurate determination of the temperature, even in the
noninteracting gas. Adding this correction to the ones given
by Eqs. (1) and (2) results in the corrected thermometry
which infers T ¼ Ti from the expansion dynamics along
direction i.
Among the four mechanisms labeled by letters H and F

in Eq. (1) and A and B in Eq. (2), we find that the Hartree
MF interaction (H) and the two-body collision effects (A)
are the dominant sources of gas anisotropy: For the 162Dy
data point at 200 nK with field along ẑ in Fig. 1(a), they
contribute 3.0% and 5.6%, respectively, out of the total 9%
anisotropy. These numbers are calculated for the aspect
ratios ωx∶ωy∶ωz ¼ 107∶49∶266 via Eqs. (28)–(37) of
Ref. [26] (see Table I therein). We have also estimated
the effective-range correction to the scattering cross sec-
tions by calculating the second-order Born correction to the
interaction matrix element at finite collision energy. It is
proportional to a2dk, where k ∝

ffiffiffiffi
T

p
is the collision momen-

tum. We find that the corresponding contribution to the AR
is negligible for our parameters.
The MF interaction and the collisional effects cause the

gas to expand faster in ẑ but slower in x̂ and ŷ for our
system’s trap parameters. A direct application of the usual

Bose-corrected TOF thermometry (neglecting interactions)
in this case would yield conflicting apparent temperatures
along each dimension. Indeed, this is shown by theoretical
curves in Fig. 2(a). At 200 nK, the discrepancy ΔT ¼
Tz − Tx between the two dimensions in the imaging plane
is about 50 nK, corresponding to 25% of its temperature. A
mistaken application of this theory leads to an inaccurate
determination of temperature and other temperature-related
properties such as gas size, trap density, etc., highlighting
the need for the corrections in Eqs. (1) and (2).
The fact that a gas in thermal equilibrium has a single

well-defined temperature allows us to determine the deca-
heptuplet s-partial-wave scattering length a of 162Dy and
164Dy using our theory. With the correct a value, our theory
should both minimize ΔT and predict the measured AR at
various temperatures. To determine a, we vary a in Eqs. (1)
and (2) and find the best-fit scattering length that simulta-
neously matches the AR data measured at the two different
field orientations. In this fitting procedure, we assign the
average of Tx and Tz to be the gas temperature. The details
of this analysis are described in [26]. The fitted scattering
length is a162 ¼ 154ð22Þa0 for 162Dy and a164 ¼ 96ð22Þa0
for 164Dy, where a0 is the Bohr radius. This new meas-
urement for 164Dy is consistent with our previously
reported value, 92ð8Þa0, measured in cross-dimensional
relaxation experiments [24]. It also agrees with the meas-
urement reported in Ref. [17] using Feshbach spectroscopy.
The new best-fit a for 162Dy is larger than, though not
inconsistent with, our previous measurement 122ð10Þa0,
and we provide a more detailed discussion of this discrep-
ancy in the Supplemental Material [26].

FIG. 2. (a) Illustration of Bose-corrected TOF thermometry to a
dipolar thermal Bose gas, showing that the theory fails to yield the
same temperature along the x̂, ŷ, and ẑ directions. Field along ẑ.
Theory curves are Tx (blue, dashed), Ty (gray, solid), and Tz (red,
dotted). (b) Observed difference between Tx and Tz, the two
dimensions in the imaging plane. The discrepancy is large if only
the Bose-corrected TOF thermometry is applied directly (gray
points), but can be reduced to close to zero (gray line) using the
additional corrections provided in Eqs. (1) and (2) (red points).
Theoretical curves in (a) and data in (b) are presented for the
experimental parameters used in the 162Dy measurement of
Fig. 1(a) with the magnetic field along ẑ: N ¼ 1.4ð1Þ × 105 and
½ωx;ωy;ωz% ¼ 2π× ½107ð1Þ;49ð5Þ;266ð1Þ%Hz.
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To illustrate that our theory greatly improves the accu-
racy of thermometry for a thermal dipolar Bose gas, we
show in Fig. 2(b) ΔT before and after applying our theory
to the 162Dy measurement. The ΔT measured in Fig. 2(b)
increases at lower temperatures and is similar to the
theoretical predictions for Bose-corrected TOF thermom-
etry in Fig. 2(a). Applying our corrections with the best-fit
scattering length leads to almost an order of magnitude
reduction in ΔT. This allows us to determine the temper-
ature of a thermal dipolar Bose gas with far less uncertainty.
The temperatures assigned to the data in Fig. 1 are the
average of the corrected Tx and Tz; error bars represent the
discrepancy.
The dependence of gas AR on the scattering length a

provides an experimental probe for investigating the varia-
tion of a near Feshbach resonances. For magnetic Feshbach
resonances, a varies with the magnetic field B according to
aðBÞ ¼ abg½1 − ΔB=ðB − B0Þ%, where abg is the back-
ground scattering length, B0 is the resonance center, and
ΔB is the resonance width [19]. We demonstrate the
measurement of a near a Feshbach resonance at 5.1 G for
162Dy, shown in Fig. 3(a), by analyzing the gas AR in TOF.

Our technique is more convenient than cross-dimensional
relaxation for measuring scattering length because it requires
only a single experimental measurement to determine a at a
given field. Cross-dimensional relaxation, by contrast,
requires multiple measurements to extract a thermalization
time as well as extensive numerical simulations when a
strong dipolar interaction is present [32,33].
To measure the gas AR near the resonance, we

prepare 2.7ð1Þ × 105 atoms at 280 nK in a trap with
½ωx;ωy;ωz% ¼ 2π × ½89ð1Þ; 44ð5Þ; 219ð1Þ% Hz. The mag-
netic field is first set at 1.580(5) G, which is the value
used for evaporative cooling. We then shift the field to the
desired value using a 10-ms linear ramp. Throughout this
procedure, the field is kept along the axis of tight confine-
ment, ẑ, to achieve the largest anisotropy in AR. After the
field ramp, we hold the atoms for 50 ms before releasing for
TOF imaging.
The measured gas ARs are shown in Fig. 3(b). As the

field approaches the 5.1-G resonance from the lower side,
we observe increasingly larger AR, as is expected for larger
a. We use our theory to convert the AR values to scattering
length, accounting for variations in atom number. The
results are shown in Fig. 3(c). The AR that follows from
Eqs. (1) and (2) is a quadratic function of a given by
σz=σx≈ 1.01þ½2.3× 10−4þ 1.6× 10−6ða=a0Þ%ða=a0Þ for
the ω’s, N, and T mentioned above. A minimum value
therefore occurs at a ≈ −72a0 with σz=σx ≈ 1. With our 1%
systematic error, we therefore have a blind spot in scatter-
ing length in the region −139a0 ≲ a ≲ −4a0 about
a ≈ −72a0. It is within this range wherein the four data
points near 5.2 G that have ARs below (but within ∼1.5σ
of) the theoretical minimum value presumably lie, and we
are unable to determine a scattering length for them [35]. In
principle, this blind spot could be shifted to a different
region of a by adjusting trap aspect ratios.
The scattering lengths shown in Fig. 3(c) fit well to the

functional form aðBÞ. The fitted resonance width is
ΔB ¼ 24ð2Þ mG, and the fitted background scattering
length is abg ¼ 157ð4Þa0. This abg value is consistent with
the best-fit a162 obtained from analysis of the data shown in
Fig. 1(a), which are taken at a different field and trap
frequency with about half the atom number. Note that we
do not observe a measurable change in a at the other two
small resonances near 4.6 G and 5.6 G.
In conclusion, we observe and develop a theoretical

understanding of the anisotropic expansion of thermal
dipolar Bose gases of 162Dy and 164Dy. The experiment
lies in a very favorable regime as far as experiment-theory
comparison is concerned; the AR anisotropy is large
enough to be measured though small enough for a well-
controlled perturbative theory to apply. As a consequence,
we are able to apply this theory for TOF thermometry in
this novel regime as well as measure the scattering length of
the gas near a Feshbach resonance with ease. This simple
method for measuring scattering lengths may contribute to

FIG. 3. (a) High resolution atom-loss spectrum for 162Dy
showing a resonance at 5.1 G and three nearby narrower
resonances. Line is to guide the eye. (b) Measured gas AR as
a function of magnetic field. Horizontal line marks unity AR.
(c) Scattering lengths corresponding to the data in (b). We are
unable to extract a scattering length for four points near the 5.2 G
small resonance with AR below unity; see text for details. All
error bars represent 1σ uncertainty.
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the development of a comprehensive theoretical under-
standing of how collisions are affected within the dense and
ultradense Feshbach spectra of these collisionally complex
lanthanide atoms [16–18,36]. Looking beyond the study of
hydrodynamics in magnetic Bose gases, a similar ther-
mometry theory may aid the study of polar molecules near
quantum degeneracy.
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