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Sign-changing interactions constitute a crucial ingredient in the creation of frustrated many-body
systems such as spin glasses. We present here the demonstration of a photon-mediated sign-changing
interaction between Bose-Einstein-condensed atoms in a confocal cavity. The interaction between two
atoms is of an unusual, nonlocal form proportional to the cosine of the inner product of the atoms’ position
vectors. This interaction arises from the differing Gouy phase shifts of the cavity’s degenerate modes. The
interaction drives a nonequilibrium Dicke-type phase transition in the system leading to atomic
checkerboard density-wave order. Because of the Gouy phase anomalies, the checkerboard pattern can
assume either a sinelike or cosinelike character. This state is detected via the holographic imaging of the
cavity’s superradiant emission. Together with a companion paper [Y. Guo, V. D. Vaidya, R. M. Kroeze,
R. A. Lunney, B. L. Lev, and J. Keeling, Emergent and broken symmetries of atomic self-organization
arising from Gouy phases in multimode cavity QED, Phys. Rev. A 99, 053818 (2019)], we explore this
interaction’s influence on superradiant phase transitions in multimode cavities. Employing this interaction
in cavity QED spin systems may enable the creation of artificial spin glasses and quantum neural networks.
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The strong atom-photon interactions provided by
cavity QED [1] open new avenues toward exploring
quantum many-body physics in a nonequilibrium setting
[2–4]. For example, cavity QED with Rydberg atoms
provides strong nonlinear interactions between photons
[5] and can lead to topologically nontrivial many-body
states [6]. Nonequilibrium Dicke superradiant phase tran-
sitions [2,4,7] and other superradiant transitions [8,9] have
been observed in transversely pumped cavities with thermal
atoms [10] and Bose-Einstein condensates (BECs) [11,12],
including transitions leading to supersolids [13], super-
radiant Mott insulators [14,15], and polariton condensates
of supermode-density-waves [16] and spinors [17–19].
Superradiant phase transitions emerge for an ensemble of

randomly distributed atoms trapped inside a transversely
pumped cavity [8,20]. Beyond a threshold pump strength,
the cavity-photon-mediated interaction energy overcomes
the kinetic energy cost associated with the formation of an
atomic density wave (DW). Consequently, the atoms self-
organize into a checkerboard pattern on the lattice formed
by the transverse pump and cavity mode. The phases of the
atomic DWand cavity mode are locked together and locked
to either f0; πg with respect to the pump, thus, breaking a
Z2 symmetry [8,12,21].
In the dispersive limit of cavity QED, where the pump

field is not resonant with the cavity modes, the photon field

may be adiabatically eliminated. These superradiant phase
transitions may then be seen to arise from an effective
Hamiltonian with an atom-atom interaction (or spin-spin
interaction for spinful atoms) mediated by the exchange of
virtually excited cavity photons [2,18,22]. Single-mode
cavities support infinite-range interactions among the atoms,
while multimode cavities provide the means for tuning the
range of interactions [22] and may allow the formation of
superfluid liquid-crystal-like states [23,24]. Photon-mediated
interactions might also be possible via the use of photonic
waveguides [25] and are similar to the phonon-mediated
interactions demonstrated among trapped ions [26–28].
While tunable in range, the interactions among neutral

atoms i, j have been demonstrated with only a fixed-sign
coupling Jij [22]. A wider range of many-body phenomena
might be possible if Jij were to flip in sign, because sign-
flipping can induce frustrated interactions, as has been
demonstrated with ions [29]. With the addition of positional
randomness, structural [23,24] and spin glasses [30,31] of
atoms in multimode cavities and waveguides [32] may be
possible. These fascinating states exhibit rigidity that arises
from a complex—and in some limits, unknown—order and
symmetry breaking [33,34]. Creating a tunable-interaction-
rangespinglass in thequantum-optical settingwouldprovidea
novel platform for investigating both how such order emerges,
and how quantum phenomena may affect glassy physics.
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In a step toward this goal, we demonstrate a sign-
changing, nonlocal Jij using a multimode cavity.
Previously, we presented a derivation of this term and
provided experimental evidence for its existence [22].
However, the work neither demonstrated its sign-changing
property, nor explored an additional DW degree of freedom
that arises due to the Gouy phase anomalies. This degree of
freedom corresponds to a BEC in a multimode cavity
adopting a DW pattern of either cos krz or sin krz character
(along the cavity axis ẑ). Here, z ¼ 0 is defined at the cavity
center, kr ¼ 2π=λ, and λ ¼ 780 nm is the cavity and pump
wavelength. We discuss the nonlocal term and how this
new DW degree of freedom can be tuned before presenting
results of three experiments. The first and second experi-
ments demonstrate the switching between cos krz or sin krz
DWs for a cavity with one and two intracavity BECs,
respectively, while the third demonstrates the sign-
changing capability of the interaction using two intracavity
BECs moved relative to one another. A companion paper
[35] presents background theory and corroborating experi-
ments in addition to other aspects of interactions induced
by Gouy phase anomalies.
The nonlocal interaction term Unonlocal arises from the

differing Gouy phase shifts of the degenerate modes of the
near-confocal multimode cavity. Gouy phase anomalies
occur in any focused wave and lead to a phase advance
as the field propagates through its waist [36–41]. Fields of
higher-order Hermite-Gaussian transverse profiles Ξl;m

exhibit Gouy phase shifts that increase as 1þ lþm. This
causes transverse electromagnetic modes (TEMl;m) of a

cavity with the same longitudinal mode number Q to
resonate at different frequencies. However, when special
geometrical conditions are met, as, e.g., in a confocal cavity,
transverse modes with differing Q become degenerate; see
Fig. 1(a). At one such degenerate frequency, all modes are
either even or odd parity. We employ an even-parity
resonance, and therefore, mirror images of the same field
amplitude are supported symmetrically across the cavity
axis. See Fig. 1(c).
The differing Gouy phases of the modes affect the form

of the interaction because the photon-mediated interaction
in a multimode cavity arises from the exchange of photons
in a superposition of all available modes at the positions of
the two atoms [22–24]. When accounted for in the sum
over all modes, the Gouy phases contribute an additional
interaction energy Unonlocal to the local interaction;
Ref. [35] provides a more physically intuitive description
of the origin of this effect. The form of the nonlocal term
is derived in Refs. [22,35] to be Unonlocalðri; rjÞ ¼
J0Dnonlocalðri; rjÞ cos krxi cos krxj, where ri are ðx; yÞ coor-
dinates of atom i, Dnonlocalðri; rjÞ ¼ cos ð2ri · rj=w2

0Þ=4π,
and w0 ¼ 35 μm is the TEM0;0 mode waist. The coupling
strength is J0¼g20Ω2=Δ2

aΔ0;0, where g0¼2π×1.47ð3ÞMHz
is the vacuum Rabi rate for an atom coupled to the center of
the TEM0;0 mode, Ω2 is proportional to the pump intensity,
and Δa ¼ −2π × 102 GHz is the detuning of the pump
from the atomic excited state. The position-dependent
prefactors cos krxi appearing in the interaction arise due
to the standing-wave pump [42]. The local interaction
is comprised of the real and mirror image terms

FIG. 1. (a) Relationship between modes in a near-planar cavity (upper) versus a near-confocal cavity (lower). As R → L, higher-order
transverse modes shift further in frequency than lower-order modes due to differential Gouy phases. (Near-)degenerate resonances arise
at confocality (R ≈ L) comprised of modes (either even or odd) from different longitudinal families Q with different longitudinal
patterns, as indicated. (b) Sketch of experimental apparatus showing one of two possible BECs (red sphere) confined within the cavity
by optical tweezer traps (not shown). Two images (real and mirror) of the supermode created by the BEC appear in the cavity emission
due to the fixed parity of the confocal cavity modes [16,22,36]. Spatial heterodyning of the emitted field is performed by interfering the
pump laser (red) with the cavity emission (blue) at the EMCCD camera. (b), (c) Simulation illustrating (d) the intracavity field pattern
and (e) resulting camera image of the object plane. Simulated camera image shows two bright spots (emitted from the BEC position and
its mirror image) and an oscillating emission pattern between them. In a ray-tracing picture, the mode of a confocal cavity adopts a bow
tie pattern [36]; in the wave picture shown here, spots emerge from the bow tie’s arms, and an interference pattern from the bow tie’s
cross. Unonlocal arises from photons exchanged via this interference field, hence, its oscillatory form, while photons exchanged via the
bright spots induce the Uþ

local terms. (e) Color wheel illustrating the complex electric field.
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U�
localðri;rjÞ¼Ulocalðri;rjÞ�Ulocalðri;−rjÞ [22,35], where

� correspond to even (odd) resonances; we employ even.
In addition to Unonlocal, the Gouy phases induce a

division of the cavity resonances into two classes with
alternating out-of-phase longitudinal DW patterns, either
sinðkrzþδÞ or cosðkrzþδÞ, where δ¼f0;πg; see Fig. 1(a).
At an even-mode confocal cavity resonance, the total
mode function is ΦQ;l;mðx; y; zÞ ∝ Ξl;mðx; yÞ cos ðkrzþ δÞ
for lþm mod 4 ¼ 0 modes, while ΦQ;l;mðx; y; zÞ ∝
Ξl;mðx; yÞ sin ðkrzþ δÞ for lþm mod 4 ¼ 2 modes [43].
Thus, while in a single-mode cavity,H∝J0coskrzicoskrzj,
in a confocal cavity, the total interaction is

U∝Ucðri;rjÞcoskrzi coskrzjþUsðri;rjÞsinkrzi sinkrzj;

where Uc;s¼Uþ
local�Unonlocal [22,35]. Moreover, while

the atomic wave function may be expanded as Ψ ¼
ψ0 þ

ffiffiffi

2
p

ψc cos krx cos krz in a single-mode cavity, an
additional atomic field is required in a confocal cavity:
Ψ ¼ ψ0 þ

ffiffiffi

2
p

cos krx½ψc cos krzþ ψ s sin krz�. Here, ψc;s

are the wave functions describing the fraction of atoms
organized into the orthogonal sine versus cosine quad-
ratures of the longitudinal profile; ψ0 is the initial BEC
wave function in the optical dipole trap [44]. The BEC
condenses into either the sine or cosine DW according to
which DW minimizes energy at the BEC position. We note
that this choice of DW is solely determined through
Unonlocal since the Uc;s have the same contribution from
Uþ

local. The remaining Z2 symmetry of the checkerboard
pattern (i.e., the choice of δ ¼ f0; πg) is spontaneously
broken as in a single-mode cavity.
The order parameter associated with the transition is

composed of the fractions of atoms acquiring a λ-periodic
density modulation in either of the two DW patterns and the
δ phase of the wave therein; in terms of these wave
functions, the order parameters are χc;s ¼ ψ0ψc;s=N, where
N is the BEC population. Each χ may be viewed as a
pseudospin with max (min) value �1; the sign of χ
indicates the relative pseudospin alignment. For BECs at
ri and rj, one may transform the system’s light-matter
interaction into an effective spin interaction Hamiltonian of
the form Hij ¼ −Jijðχciχcj − χsiχsjÞ after spatial integra-
tion [45]. Here, Jij ∝ NJ0Dnonlocalðri; rjÞ, and N is each
BEC’s population. The total effective single-BEC
Hamiltonian interaction is H1 ¼ Hii. The BEC organizes
into χc or χs depending on which DW pattern minimizes
Hii, i.e., whether Jii is positive or negative. Likewise, for
two BECs of equal size and shape, H2¼HiiþHjjþ2Hij.
The experimental apparatus is shown in Fig. 1(c). The

BECs contain ∼2 × 105 87Rb atoms in the jF¼1;mF¼−1i
state. Optical tweezers position and confine each BEC in a
tight trap of diameter <10 μm—smaller than w0. See
Refs. [22,45,47] for BEC preparation and optical tweezing
procedures. To measure the field amplitude and phase of

the superradiant emission, the cavity field and part of
the pump are interfered on an electron-multiplying charge-
coupled device (EMCCD) camera. This spatial heterodyne
measurement is holographically reconstructed to provide
the cavity field amplitude and phase; see Figs. 1(c)–1(f) and
Refs. [18,48].
Cavity field-emission measurements may be interpreted

as cavity-enhanced Bragg scattering: in the organized
phase, the transverse pump light is Bragg scattered into
the cavity mode from the atomic checkerboard pattern. The
phase of the coherently scattered light is, therefore, directly
correlated with the phase of the DW. In addition, in a near-
confocal cavity, organization into χc (χs) is heralded by a
0 (π) phase shift between the cavity emission from the
position of the BEC and its mirror image (due to Ulocal)
versus that from the center of cavity (due solely toUnonlocal)
[35]. This phase shift may be traced back to the �-sign
difference between the Ulocal and Unonlocal terms in Uc;s

(e) (f )

(a) (b)

(c) (d)

FIG. 2. (a)–(d) Extracted superradiant field at the two different
positions marked in (e). (a), (c) Plots of the extracted normalized
field amplitude. (b), (d) Plots of the corresponding phase data.
The dotted lines mark the location of the nodes in the cosine
pattern as determined from a functional fit to Unonlocal. The phase
of the electric field flips by π (while the periodicity shortens) as
the BEC’s position r is moved across a node in the cosine pattern.
The length scale in panels (a)–(d) is indicated by the white line in
panel (a) showing the cavity waist w0. (e) Plot of the functional
form of Jii. The blue and orange dots mark the position of the
BEC for the superradiant emission images above. The observed
phase change is consistent with the flipped sign of Jii. (f) Color
scale for extracted phase and electric field amplitude, where the
phase at r ¼ 0 is set to 0.
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[35]. Figure 2 presents observations of this effect, where the
amplitude and phase of superradiant emission from a single
BEC at two different positions ri is shown. These data
demonstrate the ability to tune the DWorder from a cosine
to sine pattern by controlling ri [49].
Measurements of χc;s are possible using two intracavity

BECs. Absent cross-coupling, each BEC can independ-
ently choose a δ phase of its DW pattern, resulting in an
enlarged Z2 ⊗ Z2 symmetry for the system. Detection of
their relative checkerboard states is possible since a χc DW
is �π=2 out of phase from a χs DW, where the � sign
reflects the relative δ phase of their checkerboard states.
That is, the sgnfχc;sg ¼ þ1 DW is δ ¼ π out of phase from
the sgnfχc;sg ¼ −1 DW. To observe this effect, we place
one BEC at r1 ¼ 0 and the other at r2 ¼

ffiffiffi

π
p

w0=
ffiffiffi

2
p

, as
shown in Fig. 3(a). This sets J11 ¼ −J22 ¼ N and the cross
term H12 ¼ 0 because the Jii terms cause the two BECs to
prefer opposite DW quadratures (sine versus cosine). That
is, the cross terms in H12 vanish χc1χc2 ¼ χs1χs2 ¼ 0 since
χc1 ≠ 0 & χs1 ¼ 0 for the first BEC and χc2 ¼ 0 and
χs2 ≠ 0 for the second. This is shown in the measured
electric fields of Figs. 3(b) and 3(c). We see that the phase
of light emitted at the r ≠ 0 BEC (along with the bow tie
interference fringe at which it is located) is, indeed, shifted
by �π=2. Because each BEC is free to choose between the
Z2-symmetric checkerboard states within the preferred DW
profile, we observe a random, nearly 50∶50 distribution in
relative sign over the course of multiple experimental
realizations. This lack of Z2-broken-symmetry bias indi-
cates the absence of inter-BEC coupling (i.e., H12 ¼ 0), as
intended [50].
Having demonstrated the DW-pattern-shifting effect of

Unonlocal, we now present observations of its sign-changing
character. Again, we use two BECs, but fix one BEC at
r1 ¼

ffiffiffiffiffiffi

2π
p

w0, which sets J11 ¼ N, while moving the

position r2 of the second BEC in a range of positions
satisfying J22 > 0; see Fig. 4. This causes each BEC to
energetically prefer organization into the same DW pattern,
cos ðkrzþ δÞ, associated with pseudospins χc1 and χc2, but
leaves each DW’s δ (i.e., its checkerboard pattern) free to be
determined through the nonlocal cross term interaction J12.
The relative pseudospin alignment of χc1 versus χc2 is then
set by each DW’s choice of δ. The coupling of the DWs via
H12 locks the BECs’ DW patterns to each other, reducing
the symmetry to a single Z2, as in the single BEC case.
J12 is positive in the region between r2 ¼ 0 and
r2 ≈

ffiffiffiffiffiffi

2π
p

w0=4, and so, the two pseudospins align such
that sgnfχc1χc2g ¼ þ1. However, as the cross term inter-
action strength approaches 0 near r2 ≈

ffiffiffiffiffiffi

2π
p

w0=4, the
relative phase between the DWs becomes uncorrelated
and randomly fluctuates between 0 and π, reflecting the
reemergence of the Z2 ⊗ Z2 symmetry. This can be seen
by comparing the plot of J12 in Fig. 4(e) with the data. For
larger r2’s, J12 changes sign, causing an antiferromagnetic
alignment sgnfχc1χc2g ¼ −1 and reduction down to a
single Z2 again. This is manifest in a π relative phase

FIG. 3. (a), (b) The measured electric field for two different
realizations of the experiment. The �π=2 phase difference
between the two BECs indicates that the BEC at r ¼ 0 is in a
cosine DW, while the other is in a sine wave DW. The sign flips
are indicative of the relative choice of phase δ due to Z2

symmetry breaking in each DW. (c) Color disk for the plotted
electric field. The white circular markers register the phase
difference between the two spots in 186 shots of the experiments.
We measured 92 shots of π=2 and 94 shots 3π=2. The square
marker indicates the reference phase of the r ¼ 0 BEC: the phase
of the light at r ¼ 0 is set to 0 since we choose cosine DWs to
scatter light with 0 relative phase.

(a) (b) (c) (d)

(e)

(f )

FIG. 4. (a)–(d) Examples of measured fields versus r2 for two
BECs on either side of the cavity center. r1 of the first BEC is set
so that J11=N ¼ 1. Panels (b) and (c) taken at the r2 where
J12 ¼ 0. Random π phase flips are observed at this position and
in the vicinity of small J12 with width primarily set by BEC size
and the ramp rate of the pump. (e) Phase difference between the
BECs’ spots versus r2. Twenty data points are plotted for each r2.
(f) Calculation of the self-interaction J22 and cross-interaction J12
versus r2. Positive J22 (and J11) ensures that cos krz is energeti-
cally favorable for both BECs until the sign flip in J12 causes the
second BEC to condense into opposite pseudospin alignment
with sgnfχc1χc2g ¼ −1. See Fig. 3(d) for color disk scheme.
Similar to Fig. 3, the phase of the light at r1 is set to 0.
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change between the light emitted from the two BECs [51].
To track this interaction sign change, we measure the field
phase at each r2 and plot the phase difference between the
two sets of spots in Fig. 4(e).
We have demonstrated that the nonlocal interaction

arising from Gouy phase anomalies in a confocal cavity
offers a new tool to engineer cavity-mediated atom-atom
interactions. Freezing the atoms into position, e.g., with an
optical lattice, and coupling the atomic spins as in Ref. [18],
would allow Unonlocal to mediate sign-changing spin-spin
interactions of the form cos ð2r · r0=w2

0Þ. This demonstration
of sign-changing photon-mediated interactions, in
conjunction with our recent demonstrations of spin-spin
interactions [18] and tunable-range atom-atom interactions
[22]—all within the same experimental apparatus—opens
the door to creating artificial spin glasses. With optical
tweezers to place atoms in reproducible configurations
[52,53], the exploration of replica symmetry breaking might
be possible [33]. While replica symmetry breaking should be
manifest in infinite-range spin glasses, the microscopic state
of short-range spin glasses remains an outstanding question
in statistical mechanics [34]. Moreover, placing atoms in
specific locations to realize a particular graph of �Jij
connectivity may provide a means for performing combi-
natorial optimization and Hopfield associative memory
[30,54–56] in a quantum-optical setting.
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