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BEC production  
 

We follow the procedure in Ref. [48] to produce a 162Dy BEC in the Zeeman sublevel 𝑚! =
−8 (𝐽 = 8), the absolute ground state. The atoms are loaded into a far-off-resonance single-beam 
optical dipole trap (ODT1) from a 741-nm magneto-optical trap (MOT). Instead of evaporating at 
1.58 G, as in Ref. [48], we ramp the field to 26.69 G in less than 1 ms. The scattering length at this 
field value is 150(6) 𝑎" , and we experimentally identified this field to be optimal for BEC 
production between the broad 22-G and 27-G Feshbach resonances; see Ref. [49] and Fig. S1. The 
ramp sequence avoids having to sweep through the dense Feshbach spectrum of Dy with a 
condensed gas, where heating due to inelastic three-body collisions becomes significant. This 
protocol yields a nearly pure BEC of 2.23(5) × 10# atoms after the atoms are transferred from 
ODT1 into a crossed dipole trap (ODT2) for forced evaporation. At the end of evaporation, the 
ODT2 trap frequency is set to 0𝜔$	, 𝜔% , 𝜔&4 = 2𝜋 × [63.9(6), 11.8(3), 166.4(5)]  Hz. The 
magnetic field axis is kept along the direction of gravity 𝑧̂ in the above procedure. We then rotate 
the field to align the dipoles at the desired 𝜃 , where 𝜃  is the angle subtended by the dipole 
polarization and 𝑥?. The rotation is adiabatic such that no collective mode is excited. The amplitude 
of the bias field is kept constant so that it does not coincide with Feshbach resonance features 
during the rotation. This procedure minimizes three-body heating and atom loss. The density 
profile of the dipolar BEC can be determined by solving the Thomas-Fermi integral equation for 
each 𝜃, as in Ref. [50]. 

 
Quasi-1D confinement  
 

Quasi-1D dipolar gases have been created in 1D tubes of 2D optical latices in systems using 
Cr in the weakly repulsive interacting regime [51] and Dy in the regime of 𝛾 ≲ 10 [21]. We realize 
such an array of quasi-1D tube-like traps in a 2D optical lattice by retroreflecting a pair of linearly 
polarized laser beams. The lasers are red-detuned by 6.2 GHz from the 741-nm Dy narrow-line 
transition [52]. The 𝑦? and 𝑧̂ lattice beams have waist radii of 150 𝜇m and 195 𝜇m, respectively. 
The Dy AC light shift is anisotropic with respect to the magnetic dipole polarization (constrained 
in the 𝑥?-𝑧̂ plane) as a result of its large tensor polarizability [53]. Therefore, as in previous work 
[21], we use a half-wave plate to set the polarization of the 𝑦? lattice beam to always be orthogonal 
to the dipoles to maximize the lattice depth at each 𝜃. By tuning the laser power, we set the lattice 
depth 𝑉" = 30 𝐸R , where 𝐸R/ℏ = 2𝜋 × 2.24 kHz is the recoil energy of a lattice photon. This 
depth corresponds to a transverse trap frequency of 2𝜋 × 25 kHz and a harmonic oscillator length 
of 𝑎( = Iℏ/𝑚ω( = 952 𝑎", where 𝑎" is the Bohr radius. The typical axial frequency of the tubes 
is 40 Hz. The lattice depth is measured using the Kapitza-Dirac diffraction technique [54]. The 
tunneling rate between the tubes is estimated by using 

𝐽
𝐸R

≃
4
√𝜋

 𝑠)/# expQ−2 𝑠+/,R , (S1) 

where 𝑠 = 𝑉"/𝐸R  [55]. For our lattice, 𝑠 = 30  and 𝐽/ℏ = 	2𝜋 × 1  Hz. Thus, tunneling is 
negligible during the 100 ms of total time needed to measure collective oscillations. 
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Magnetic field determination 
 

To measure the bias field magnitude, we drive transitions between magnetic sublevels using 
a weak radiofrequency (RF) field along 𝑧̂. As a result of dipole-induced spin relaxation [56], the 
atoms subsequently release their Zeeman energy as kinetic energy and are ejected from the trap. 
Resonance appears as an atom loss feature, with the RF frequency equal to the Zeeman energy 
spacing and, by extension, proportional to the bias field magnitude. As shown in Fig. S2A, the 
typical line shape is well approximated by a Gaussian. This procedure is performed after the atoms 
are loaded into the 2D lattice, yielding a field accuracy of ∼2 mG for all fields and 𝜃-values under 
consideration. 
 
Molecular binding energy spectroscopy 
 

The molecular binding energy 𝐸B in both 3D and quasi-1D can be determined by inducing 
resonant molecular association [49, 57, 58, 59]. Similar to the bias field calibration measurements, 
we produce an oscillating magnetic field along 𝑧̂ of the form 𝐵(𝑡) = 𝐵avg + 𝐵mod  sin(2𝜋𝑓mod𝑡), 
where 𝐵mod and 𝑓mod are the amplitude and frequency of the modulation. The resonant condition 
(𝑓mod = 𝑓") is 𝐸B + ℎ𝑓mod − 𝑝res, /𝑚 = 0, where 𝐸B is the molecular binding energy and 𝑝res, /𝑚 is 
the resonant continuum energy. Assuming the Wigner threshold law, the line shape of such a 
measurement is given by 

𝑊7(𝑓, 𝑓") ∝ ` exp a
−𝜖
𝑇8 d 𝜖

79+/,
:

"
𝐿;(𝑓, 𝑓" + 𝜖)	𝑑ϵ, (S2) 

where ϵ is the collision energy, 𝐿<(𝑓, 𝑓" + 𝜖) is a Lorentzian of full width at half maximum of 𝛾 
centered at 𝑓" + 𝜖, and 𝑇8 is the temperature in units of frequency [57]. Assuming only 𝑠-wave 
collisions (𝑙 = 0) and very narrow intrinsic linewidth such that 𝐿;(𝑓, 𝑓" + 𝜖) → 𝛿[𝜖 − (𝑓 − 𝑓")], 
we may use the simpler expression 

𝑊"(𝑓, 𝑓") ∝ exp[−(𝑓 − 𝑓")/𝑇8] (𝑓 − 𝑓")+/, (S3) 
to fit the spectra to the blue side of the resonance. The typical asymmetric line shape is shown in 
Fig. S2B. 
 
Characterization of contact interaction 
 

Figure S1 shows our data revealing the three Feshbach resonances (FR 1, FR 2, and FR 3) of 
162Dy used in this experiment. A broader resonance (FR 4) at lower fields (21.93 G) also 
contributes to the scattering length determination. We conduct high-resolution atom loss 
spectroscopy across the experimentally relevant field range using an ultracold thermal gas in 3D. 
Atom loss features at the FR poles are also present under 1D confinement, as shown in Fig. S1. 
We note that FR 1 and FR 4 were first reported in Ref. [49]. In particular, the resonance poles of 
interest for the stiffness and energy measurements are located at 𝐵"+ ≈ 26.90 G and 𝐵", ≈ 27.05 
G, and CIR 1 and CIR 2 are located just to the low-field side of these FRs, respectively. The 
coupling between these collisional channels can be neglected since the resonance widths are small, 
i.e., {Δ,, Δ)} ∼ 10 mG ≪ Δ+ ≈ 0.2 G ≪ Δ# ≈ 3 G. Thus, the magnetic field dependence of the 
3D scattering length can be modeled as 

𝑎3D(𝐵) = 𝑎bg q1 −
Δ+

𝐵 − 𝐵"+
−

Δ,
𝐵 − 𝐵",

−
Δ)

𝐵 − 𝐵")
−

Δ#
𝐵 − 𝐵"#

r , (S4) 
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where the background scattering length is denoted by 𝑎bg [60]. 
Reference [49] reports two sets of Feshbach parameters based either on anisotropic expansion 

(AR) data or a combination of AR and 𝐸B measurements in 3D, as summarized in Table S1. We 
repeat these measurements because, unfortunately, the fit covariance matrix required for error 
propagation of 𝑎3D  in Eq. (S4) is not provided in Ref. [49]. We conduct our measurements 
primarily around FR 1 to avoid the multitude of narrow resonance features overlapped with FR 4. 
These are too narrow to affect the results of this work, but they can complicate the scattering length 
measurements. Accurate determination of 𝑎3D depends predominantly on the knowledge of the 
poles and widths of the three resonances FR 1–3 shown in Fig. S1. We note that of the two sets of 
fit parameters provided in Ref. [49], the AR-only measurements, valid for both 𝑎3D > 0 and 𝑎3D <
0, yield an 𝑎bg that is within the uncertainty of our previously measured value taken around 5 G 
[61, 62]. We choose to use this value. To limit the number of free parameters, we fix the values of 
𝑎bg , 𝐵"# , and Δ#  using this AR-only data. We then extract 𝐵"@  and Δ@  and their errors for 𝑖 =
1, 2, 3  from our independent, high-resolution measurements of 𝐸B  in both 3D and quasi-1D. 
Similar to Ref. [49], we fit the 3D data in the field range 𝐵 > 26.85 G using the corrected universal 
model 

𝐸B(𝐵) = −
ℏ,

𝑚[𝑎3D(𝐵) − 𝑎v],
, (S5) 

where for Dy, the mean scattering length 𝑎v = 0.956 𝑅vdW [63] and 𝑅vdW = 80 𝑎" [64]. For the 1D 
data, 𝐸B of the confinement-induced dimers is implicitly given by 

𝑎3D
𝑎(

= −
√2

𝜁(1/2,−𝐸B/2ℏ𝜔()
, (S6) 

where 𝜁 is the Hurwitz zeta function [24]. This combined least-square fit yields the six Feshbach 
parameters and the associated symmetric covariance matrix. This matrix is given by 

𝚺 =

	 𝐵"+ 		Δ+ 	𝐵", 	Δ, 	𝐵")	 		Δ)		
B"+
Δ+
B",
Δ,
B")
Δ) ⎣

⎢
⎢
⎢
⎢
⎡
2.2 7.2 0.1 1.2 −0.1 −0.4
	 25.2 0.2 3.4 −0.0 −1.2
	 	 0.3 1.0 −0.0 −0.0
	 	 	 3.9 0.0 −0.2
	 	 	 	 0.3 0.6
	 	 	 	 	 1.6 ⎦

⎥
⎥
⎥
⎥
⎤
, (S7) 

in units of mG2. The fit result is shown in Table S1, and the 𝐸B data are summarized in Fig. S3. 
 
Excitation of breathing modes 
 

The breathing mode of the trapped quasi-1D gas appears as modulations of the axial width; 
see Fig. S4 for example. The mode may be stimulated by an input perturbation, and there are two 
such perturbations we employ in this work depending on which is more effective at a particular 
𝑔1D; a similar strategy was employed in Ref. [18]. The first method involves quenching the axial 
trap depth. To do so, we change the trap depth adiabatically with either an additional dipole trap 
beam or the lattice beams before quickly ramping the laser power back to the pre-quench value. 
This induces a breathing of the trapped gas. The second method relies on the fact that the mode 
can be weakly excited when we perform the 𝐵-field sweep to tune 𝑎3D from that used for forced 
evaporation to its target value. This ramp is performed as fast as possible from the Thomas-Fermi 
(TF) gas regime, across the TG-regime, over the CIR, and into the sTG regime, in a similar fashion 
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to Ref. [18]; a fast ramp is desirable due to the need to limit heating from the resonances traversed. 
In particular, we set the ramp duration to be 100 𝜇s. Once at the target field, we wait 5 ms for the 
chamber eddy currents to settle before starting the oscillation measurements. The sweep is 
sufficiently adiabatic to stimulate no more than a weak excitation of the breathing oscillation and 
does not cause the system to jump the extensive energy gap between Lieb-Liniger eigenstates 
shown in Fig. 3. Moreover, the benignness of the ramp is manifest in the fact that we measure 
𝐸/𝑁's and 𝑅's consistent with that expected from ground states of the repulsive Lieb-Liniger (LL) 
model (i.e., before the first CIR); see the lowest-energy black circle points in Fig. 3 and Fig. S5. 
Sweeping across the discontinuity in 𝑔1D is nonadiabatic, but continuous in the LL eigenspectrum 
and wavefunction [16, 19], which makes possible the smooth transitions from the TF to TG and 
TG to sTG regimes. The breathing of the gas is studied in time-of-flight using absorption imaging, 
and we ensure that the resulting breathing amplitude is within 10–20% of the equilibrium gas width 
after expansion; see also Ref. [18] for other examples of such measurements in 1D gas systems. 
In our system, the dipole mode frequency varies between 33 and 47 Hz, whereas the breathing 
mode frequency lies between 66 and 94 Hz. 
 
Fitting of breathing oscillations 
 

The expanded gas shape, after integration over the lattice directions, can be approximated by 
a Gaussian. The time evolution of the best-fit root-mean-square (rms) width can be modeled by a 
damped sinusoid 

𝑥rms(𝑡) = 𝑎" exp q−
𝑡
𝜏r sin

(𝜔B𝑡 + 𝜙) + 𝑎+𝑡 + 𝑎,, (S8) 

where 𝑎" is the breathing amplitude, 𝜏 is the damping time of the oscillation, 𝜔B is the breathing 
frequency, 𝜙 is the breathing phase, 𝑎+  encapsulates the increase in gas width due to heating 
processes, and 𝑎, denotes the equilibrium gas width. We use a standard least-square fitting routine 
to extract 𝜔B. Additionally, to further evaluate the quality of the frequency estimation, we employ 
a resampling fitting method that is similar to that in Ref. [65]. Specifically, we randomly sample 
80% of the oscillation time series 1000 times. Each of the generated time series is then fit to Eq. 
(S8). We ensure that the resulting best-fit 𝜔B distribution is single-mode, and that the least-square 
fitting result lies within 1𝜎 of the mean of the distribution. 
 
Energy-per-particle measurements 
 

The energy per particle 𝐸/𝑁 is manifest in the width of the momentum distribution. After 
holding the atoms in the lattice for varying time intervals, we rapidly tune 𝑎3D to near zero before 
deloading the lattice using a 500-𝜇s exponential ramp to release the gas for time-of-flight imaging. 
This protocol ensures that the expansion of the gas is ballistic. We note that the lattice deloading 
sequence constitutes a standard band-mapping operation along 𝑦?  and 𝑧̂ [66], which leaves the 
momentum distribution along the tube axis 𝑥? unaffected. We map out the time evolution of the 
axial momentum distribution of the gas when determining the mean width of the expanded gas for 
use in this 𝐸/𝑁 measurement. This is because state preparation may weakly excite the breathing 
mode. We can account for this time-dependent width by measuring the axial momentum 
distribution for a varying hold time in the lattice, not just at one hold time. Only 30 ms is needed 
to record this time evolution, and a constant-amplitude sinusoid with constant background is used 
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to fit the evolution. This procedure reveals the kinetic part of the energy per particle of the system 
under investigation, denoted as 𝐸/𝑁 in the main text. 

The theoretical value of the dimensionless energy per particle 𝑒(𝛾) and kinetic energy per 
particle 𝑒C(𝛾) in the ground state can be found by numerically solving the Bethe ansatz equations; 
see Ref. [19] and citations therein. This formalism has been extended to sTG and higher excited 
states [13, 19]. We follow this approach to evaluate 𝑒(𝛾) and 𝑒C(𝛾) for all of the parameter space 
we have experimentally explored, producing the curves in Fig. 3 of the main text and Fig. S6 
below. The calculation is summarized here for a homogeneous system. The Bethe ansatz 
wavefunction consists of plane waves with a quasimomentum distribution 𝑔(𝑘) satisfying the 
following integral equations: 

1 + 2𝜆`
𝑔(𝑘8)𝑑𝑘8

𝜆, + (𝑘8 − 𝑘),
+

D+
= 2𝜋𝑔(𝑘), (S9) 

𝑒(𝛾) =
𝛾)

𝜆) ` 𝑔(𝑘)𝑘,𝑑𝑘
+

D+
, (S10) 

𝛾 ` 𝑔(𝑘)𝑑𝑘
+

D+
= 𝜆. (S11) 

Numerically solving these equations yields eigenstates and 𝑒(𝛾) within the first holonomy cycle 
[19, 67]. Equation (S9) is generalized using the methods described in Ref. [13] to allow 𝑒(𝛾) to be 
solved for excited states in different holonomy cycles. Systematic shifts due to the underlying 
harmonic trap and varying atom number among tubes in our system must be accounted for before 
the measured 𝐸/𝑁 may be compared with theory. The first systematic is due to the single-tube 
harmonic trap. The kinetic energy of such a trapped system is 

ℰ@,F = `
ℏ,𝑛@,F, (𝑥)
2𝑚 𝑒C0𝛾@,F(𝑥)4𝑛@,F(𝑥)𝑑𝑥, (S12) 

where 𝑛@,F(𝑥)  is the density profile for the tube index (𝑖, 𝑗)  estimated using the local density 
approximation along with knowledge of 𝑒(𝛾) [38, 68] and 𝛾@,F(𝑥) = −2/𝑎1D𝑛@,F(𝑥). We then 
consider tubes with varying atom numbers and perform a weighted average based on the 
probability 𝑃(𝑀) of finding 𝑀 atoms in a tube [28]. The total resulting calibration factor 𝐶 can be 
referenced to the energy per particle in the central tube as follows 

ℰ
𝑁
=
ℏ,𝑛",",

2𝑚
𝑒CQ𝛾","R ⋅ 𝐶. (S13) 

To enable a direct comparison to the theory curve 𝑒C(𝛾), the measured data 𝐸/𝑁 in Fig. 3 of the 
main text are normalized by a factor 𝐶 ⋅ ℏ,𝑛",", /2𝑚 that is recalculated for each set of experimental 
parameters. 
 
Notes on error analysis 
 

We present some details concerning error analysis. The uncertainties in the dipole and 
breathing frequencies and 𝐸/𝑁 values are estimated from least square fit results. Specifically, 
these are the diagonal entries of the covariance matrix scaled by the reduced 𝜒, [69]. The dominant 
source of error for the interaction related quantities is 𝑎3D, and the error is propagated using the 
covariance matrix Eq. (S7) in order to account for correlations between Feshbach parameters. We 
note that for those data near the zero crossing and point of divergence in 𝑎3D (e.g., near the limits 
where 𝐴, → ∞ and 0, respectively), standard error propagation based on a Taylor series yields a 
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diverging uncertainty. For these cases, we instead use the max-min method that gives asymmetric 
confidence intervals. This method has similarly been used in Ref. [18]. Standard error propagation 
is employed elsewhere [69, 70]. 

6.77*+8+,3249!"+:3 
 
Discussion of intertube DDI 

 
The intertube spacing is 371 nm, half the lattice wavelength. Atoms in nearby tubes are able 

to interact via the long-range dipole-dipole interaction (DDI) [21]. However, these interactions are 
weak compared to the total kinetic and short-range interaction energies per atom (outside the 
weakly repulsive ground-state regime). Indeed, the collective oscillation data agree with the 
isolated single-tube predictions for the ground states of the nondipolar repulsive LL model, as 
demonstrated by the 𝑅 data in Fig. S5. Thus, because the intertube DDI evidently plays little role 
in the repulsive LL model data and because the nondipolar 55∘ sTG data in Fig. 2A are not too 
dissimilar from that of the nondipolar Cs system [18], we conclude that the intertube DDI plays 
little role in the attractive LL model data of Figs. 2–4. That is, both the absolute and differential 
shifts of the data due to the intertube DDI seem to be small, and we believe that the dramatic, 
orders-of-magnitude effect on the sTG stability comes from the intratube DDI. 
 
Stiffness data for ground states of the repulsive Lieb-Liniger model versus 𝜃 
 

For nondipolar gases, it is known that 𝑅 transitions from 3 for a TF BEC (𝐴, roughly between 
1 and 100) before rising to 4 as 𝐴, → 0 in the TG limit [37]. This expectation is borne out by our 
55∘  data in Fig. S5A and those of the Cs experiment [18]. Moreover, this seems to be true 
regardless of 𝜃, showing how little the DDI affects the ground state system.  
 
Stiffness data for 90∘ excited states on the attractive branch of the second holonomy level 
 

We show stiffness data for the attractive branch of the second holonomy level in Fig. S6. The 
Bethe ansatz prediction is also plotted [19]. Since thermal gases have the same stiffness, 𝑅 = 4 
(see inset of Fig. S8B) [37, 43], collective oscillation measurements cannot alone tell us whether 
these states are nonthermal. However, we can discern their nonthermal nature by sweeping in and 
out of this regime for various hold times before making measurements of 𝐸/𝑁 and 𝑅, as shown in 
Fig. 4 of the main text. 
 
Absence of CIR shift 
 

Several theoretical works predict a dependence of the CIR position on the DDI strength and/or 
angle [36, 71, 72, 73]. We do not observe any such shift in our molecular binding energy 
measurements, within experimental resolution. This might be due to the narrowness of the 
Feshbach resonances in Dy, or to their unusually complicated character [74], both not considered 
in those works. 
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Theory predictions of purely dipolar sTG gases 
 

Theoretical results prior to the start of this work focused exclusively on purely dipolar models, 
in which the only interaction comes from the DDI [75, 76, 77, 78, 79, 80, 81]. As such, these 
cannot describe the case at hand wherein there is an interplay between the short-range contact 
interaction and the DDI and it is the cyclical manipulation of the contact that topologically pumps 
the system. 

Contact-free, repulsive DDI sTG gases were predicted to exist in the ground state, if one takes 
the definition of the sTG to be a gas with correlations stronger than that of a TG gas, regardless of 
whether it is excited [75, 76, 77, 78, 79, 80]. Such correlations arise due to the long-range nature 
of the repulsive DDI, and not to quenching into any attractive potential. Such states are very 
different from the DDI-stabilized excited-state quenched sTG gases discussed here. Regardless, 
the repulsive DDI strength of Dy is insufficient to induce ground-state sTG gases at the densities 
explored. Reference [81] did consider quenching a purely dipolar gas into an excited state sTG gas 
by abruptly rotating the magnetic field angle from repulsive (𝜃 = 90∘) to attractive (𝜃 = 0∘). But 
again, they did not consider the simultaneous effect of a contact interaction or its use for 
topological pumping.  

Stimulated by our work, the authors of Ref. [82] considered the repulsive ground state of a 
Lieb-Liniger model with the DDI perturbatively added. They report 𝑅  versus 𝐴,  curves very 
similar to those presented as solid lines in Fig. S5 that were calculated using a regularized 1D DDI. 
 
Regularized 1D dipole-dipole interaction 
 

References [75, 76, 77, 78, 81] employed the unregularized DDI in their 1D models. This 
contains the 1/𝑟) divergence when two atoms approach one another. However, in a quasi-1D trap, 
this divergence is smoothed out by the transverse degrees of freedom; the interaction must be 
regularized by integrating out these transverse degrees of freedom [21, 79, 80, 82]. This operation 
removes the divergence, replacing it with an extra delta function-like term while reducing the 
strength of the 1/𝑟) term at short distances. 

We now address whether there might be any contribution of this effective short-range term 
to our experiment. Such a contribution would be manifest as a shift of the CIR versus 𝜃. As we do 
not measure any such shift, nor any inconsistency with respect to nondipolar theory in the ground 
state, we conclude that the effect is negligible in our mapping of 𝐵 to 𝑎3D. Thus, 𝑔1D and 𝛾 are 
unaffected. Away from the CIR, the contact-like DDI contribution may be simply added to the van 
der Waals contribution, as in Ref. [21]. We follow this method to: 1) generate the solid 𝑅 versus 
𝐴,  curves in Fig. S5, which are nearly indistinguishable from that derived by a perturbative 
calculation presented in Ref. [82]; and 2) determine the position of the vertical dotted line in Fig. 
2C of the main text and in Fig. S7. An axial trap frequency of 40 Hz and 𝑁 = 35 are used to 
determine the position. 
 
Minimal state 
 

In the main text, we considered cycles in which (in the ideal limit) each eigenstate is pumped 
to a higher-energy many-body eigenstate. We can also consider the reverse cycle: under this, some 
eigenstates map to “collapsed” states with large numbers of molecular clusters and a corresponding 
divergence of the energy in the unitary limit. These minimal states are defined as eigenstates of 
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the Hamiltonian for which this inverse cycle leads to a divergence of eigenenergy [13]. In other 
words, this is a ground state that is tuned into a bound state via cycling 𝑔1D backwards: tuning 
𝑔1D > 0 to 𝑔1D < 0 directly (i.e., without crossing a CIR) induces a collapse just like in attractive 
BECs in higher dimensions. We demonstrate that in our system, the states with 𝑔1D → 09 in the 
first holonomy level are minimal states by tuning them directly to 𝑔1D → 0D by crossing 𝑔1D = 0. 
To do so, we produce a 1D BEC at a 𝐵-field of 29.805 G (beyond CIR 2) for the repulsive DDI 
configuration (90∘) before performing the inverse cycle of 𝑔1D from positive to negative through 
zero. This protocol ensures that the gas does not get pumped to higher holonomy levels via crossing 
a CIR and the resulting 𝑔+H → ±∞ divergence. As shown in Fig. S7B, the heating rate diverges 
shortly after the point where the van der Waals (attractive) and DDI (positive) contributions to 𝑔1D 
cancel, indicating the onset of collapse due to bound-state formation. This is confirmed by the 
stiffness measurement in Fig. S7A, where we are unable to excite a well-defined breathing mode 
below the same 𝐴, at which the heating begins to significantly increase.  
 
Heating measurements 
 

We determine the heating rate of the system for all interaction strengths in the ground and 
excited states. These measurements are summarized in Fig. S8A. The experimental sequence is 
identical to the breathing mode measurements, and the kinetic energy per particle 𝐸/𝑁 for each 
hold time can be extracted from the squared RMS width of the expanded gas, whose profile along 
the tube direction is well approximated by a single Gaussian.  

Heating seems to ensue only after a hold time of 𝑡" ≈ 100 ms, which is longer than the final 
time of the collective oscillation measurements. The fitted width remains roughly constant before 
𝑡". The 𝐸/𝑁 increases linearly after this, and the best-fit slope determines the heating rate. We do 
not observe enhanced heating when the gas is quenched into a breathing mode. Both observations 
suggest that thermal effects are of negligible influence on the breathing mode measurements.  

While most measured heating rates are within 1𝜎  of the mean value of 14  nK/s, some 
remarks on the outliers are in order. First, when 𝜃 = 0∘, the dipoles are in the prolate configuration 
(i.e., they are aligned with the symmetry axis of the cylindrical tubes). The DDI is attractive in 
such a trap where the trap aspect ratio 𝑙 = 𝜔$/𝜔( < 1, leading to an instability at the mean-field 
level of the dipolar BEC, even in the presence of a repulsive contact interaction. (See Ref. [83] for 
a discussion of fluctuation corrections.) In our system, 𝑙 = 0.002 ≈ 0 , and the critical 3D 
scattering length 𝑎3D,	crit  is approximately equal to the dipolar length 𝑎dd = 𝐶dd 𝑚/12𝜋ℏ, =
129 𝑎", where 𝐶dd = 𝜇"𝜇, = 𝜇"(9.93𝜇B), is the DDI coupling constant for Dy, 𝜇" is the vacuum 
permeability, and 𝜇B is Bohr magneton [42]. For the point labeled A in the TF regime, 𝑎3D =
154(6) 𝑎" and, the enhanced heating rate when the breathing oscillations are initiated may be 
attributed to this mean-field mechanical instability. The source of heating for points B and C might 
be due to many-body cluster formation, since they are near the collapse point. 
 
Thermally driven crossover from a Thomas-Fermi to an ideal Bose gas 
 

We study thermal effects on the equation-of-state of a TF gas in the ground state as an 
independent means of verifying the characteristic heating rate of the quasi-1D system. Specifically, 
we set 𝜃 = 90∘ and 𝐴, ≈ 7 (before crossing CIR 1), where 𝑅 ≈ 3 suggests that the gas is deep 
within the TF regime. We hold the atoms in the lattice for a varying delay time before initiating 
the breathing oscillation measurement. As predicted by Yang-Yang thermodynamics [84], the 
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transition from the TF (𝑅 = 3) to the ideal Bose gas (𝑅 = 4) regime occurs at a crossover 
temperature 𝑇co = √𝛾 ℏ,𝑛1D, /2𝑚 , where 𝛾 = −2/𝑛1D𝑎1D  is the dimensionless LL interaction 
parameter and 𝑛1D is the 1D linear density [85]. For our experimental parameters, 𝑇co ≈ 17 nK. 
The data in Fig. S8B shows that it takes over 840 ms for 𝑅 to rise to 4. Given the typical heating 
rate of 14 nK/s (see Fig. S8A), it would take ∼1 s to cross over into the ideal Bose gas regime if 
we assume the initial gas temperature is much less than 𝑇co. This timescale is consistent with our 
data.  
 
Comment regarding comparison of 55∘ and nondipolar Cs data in Ref. [18] 
 

We first restate qualitative arguments regarding where along 𝐴, the collapse should occur for 
nondipolar gases [15]. The point roughly occurs when the sum length 𝑁𝑎1D equals the width of 
the harmonic container, which is proportional to √𝑁𝑎∥  for fermionized atoms; i.e., when 𝐴 =
√𝑁𝑎1D/𝑎∥ = 1. The collapse may be described in analogy to the classical gas of hard rods of 
length 𝑎1D [15]. The classical gas becomes infinitely stiff as the sum of the rod lengths 𝑁𝑎1D 
equals the length of the container, whereas the stiffness of the quantum gas softens to zero in the 
collapse. The earlier collapse of our 0∘ data may be viewed in this picture as arising from the 
attractive DDI “elongating the rods.” 

Our nondipolar data for 55∘ (see Fig. 2A) is shifted by ∼10× to the low-𝐴, side with respect 
to the Cs data in Ref. [18], itself shifted somewhat to the low-𝐴, side of the estimate given above 
(and the variational Monte Carlo data). The reason for these shifts is unknown. Theory is not yet 
able to predict where the data should intercept 𝑅 = 0 for any trapped quantum system [16], let 
alone the dipolar gas, as this has to do with details of the complicated coupling to the multitude of 
cluster states. Variational Monte Carlo suggests the gas becomes unstable (𝑅 → 0) at 𝐴, = 0.6, 
but this is only approximate [16]. The shift is likely nonuniversal in origin, as is the exact intercept 
of the data with 𝑅 = 4 [16]. 
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(A) Poles of the Feshbach resonances (FRs), indicated in dashed lines and determined from the 
molecular binding energy measurements, are overlaid on top of a high-resolution atom-loss 
spectrum taken using an ultracold thermal gas for a hold time of 50 ms in the lattice. (B) Atom-
loss spectra in the 1D degenerate regime for the same lattice hold time are presented for the 𝐵-
fields studied in Fig. 2 and Fig. S6 at each 𝜃. In both panels, the atom number 𝑁 is normalized by 
the peak number 𝑁" obtained in a field region away from any Feshbach resonance. 
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($;<!6><!
Typical atom loss spectra for (A) magnetic field and (B) molecular binding energy measurements. 
Here, 𝑁 and Δ denote the atom number and RF detuning from the resonant condition, respectively. 
The solid lines are the best-fit line shape given by a Gaussian and 𝑊"  [from Eq. (S3)] in the 
respective panels. 
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($;<!6?<!
(A) Bound state energy data 𝐸 under 1D confinement near the three CIRs as a function of the ratio 
of the transverse harmonic length (𝑎() and 3D scattering length (𝑎3D). The open-channel energy 
is labeled in dashes. (B) 3D and 1D binding energy data 𝐸B (defined as the energy difference 
between the open channel and the molecular bound state) around CIR 1 as a function of 𝐵-field. 
The best fit to the 3D model using Eq. (S5) and the 1D model using Eq. (S6) are shown in dotted 
and solid lines, respectively. We note that for the 3D data (pentagons), the points without dark 
edges are outside of the universal regime where 𝑎3D ≫ 𝑎v and are therefore excluded from the fit. 
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In stiffness measurements, we excite and compare the (A) breathing and (B) dipole modes of the 
gas confined within a weak harmonic trap along the axial direction 𝑥?. (C) Typical breathing data 
shows the time evolution of the rms cloud width 𝑥rms after 14 ms of time-of-flight expansion. The 
fit to Eq. (S8) is shown as a solid line. 
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($;<!6A<!
𝑅 versus interaction parameter 𝐴, in the repulsive 𝑔1D > 0 regime of the first holonomy cycle. 
Measurements are shown for the (A) nondipolar (𝜃 = 55∘), (B) attractive DDI (0∘), and (C) 
repulsive DDI (90∘) systems. Nondipolar theory (dotted line) describing the TF-to-TG crossover 
seems to agree with the data regardless of 𝜃 [37]. Accounting for corrections from the regularized 
1D DDI provides a small shift from the nondipolar results, as shown in solid lines in panel (B) and 
(C). These lines are similar to that calculated in a recent perturbative treatment [82]. Regardless, 
these shifts are too small to be resolved by the experiment. We additionally show results of a 
nondipolar Hartree calculation (dashes) that describes the crossover of the TF gas into the weakly 
interacting regime of a Gaussian BEC [86]. 
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($;<!6B<!
Stiffness 𝑅  versus interaction parameter 𝐴,  in the attractive 𝑔1D < 0  regime of the second 
holonomy cycle for the repulsive DDI (𝜃 = 90∘) system. Letter labels refer to the points in Figs. 
1 and 3 of the main text. The solid curve is the Bethe ansatz prediction. 
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A minimal state [13] can be demonstrated by inverse cycling 𝑔1D from positive to negative through 
zero (and not through the CIR-induced divergence), as described in the text. Stiffness and heating 
rate measurements for 𝑔1D < 0 are shown in panel (A) and (B), respectively. The vertical dotted 
line shows the point where the short-range DDI and van der Waals contributions to the 1D coupling 
strength are equal and opposite. The system becomes susceptible to collapse beyond this point 
(i.e., toward smaller 𝐴,), where the attractive contact interactions begin to dominate the repulsive 
DDI. This collapse is manifest as a diverging heating rate and an 𝑅 that softens to 0. In panel (A), 
breathing mode oscillations cannot be observed for 𝐴,  less than ∼ 10 due to this collapse 
instability. 
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(A) Heating rate in 1D is plotted as a function of magnetic field, which provides tunability across 
different interaction regimes. The circles, triangles, and squares denote 𝜃 = 0∘ , 55∘ , and 90∘ , 
respectively. The points with dark edges are measured after stimulating the breathing mode, 
whereas those without are at rest. The mean heating rate excluding the labeled outliners is shown 
in dashes, and the shaded area spans ±1𝜎 (standard deviation). Details regarding the three outlier 
points in the unstable regime for 𝜃 = 0∘ and 55∘ (labeled A, B, and C) are provided in the text. 
(B) Heating of a TF gas with 𝜃 = 90∘  and 𝐴, = 𝑁 𝑎1D, /𝑎∥, ≈ 7 . The ratio 𝑅 = (𝜔B/𝜔D), 
(squares) and kinetic energy per particle 𝐸/𝑁 (circles) are plotted as a function of the hold time 
before breathing oscillations are stimulated and measured. These data may be compared to the 
thermalization (without heating) of excited states in Fig. 4 of the main text. The inset shows the 
stiffness of a thermal gas at 160 nK. 
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Summary of Feshbach parameters for the four FRs included in Eq. (S4). We choose to report a 
covariance matrix for the errors in our measurements rather than an error on each entry in the table. 
The 6 × 6 covariance matrix 𝚺 for 𝐵"@ and Δ@ for 𝑖 = 1, 2, 3 is given in the text. 
 
 𝑎bg (𝑎") 𝐵01 (G) Δ+ (G) 𝐵02 (G) Δ, (G) 𝐵03 (G) Δ) (G) 𝐵04 (G) Δ# (G) 
Ref. [49]: AR 180(50) 26.892(7) 0.14(2)     21.93(20) 2.9(10) 
Ref. [49]: AR+3D 𝐸B 220(50) 26.902(4) 0.14(5)     21.91(5) 1.9(7) 
This work 180 26.901 0.163 27.050 0.040 26.624 0.029 21.93 2.9 
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