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Abstract: We report the first measurement of a tune-out wavelength for ground-state bosonic
Dy and linearly polarized light. The tune-out wavelength is measured as a detuning from the
nearby narrow-line 741-nm transition in '9>Dy, and is the wavelength at which the total Stark
shift of the ground state vanishes. We find that it strongly depends on the relative angle between
the optical field and quantization axis due to Dy’s large tensor polarizability. This anisotropy
provides a wide, 22-GHz tunability of the tune-out frequency for linearly polarized light, in
contrast to Rb and Cs whose near-infrared tune-out wavelengths do not exhibit large anisotropy.
The measurements of the total light shift are performed by measuring the contrast of multipulse
Kapitza-Dirac diffraction. The calculated wavelengths are within a few GHz of the measured
values using known Dy electronic transition data. The lack of hyperfine structure in bosonic Dy
implies that the tune-out wavelengths for the other bosonic Dy isotopes should be related to this
162Dy measurement by the known isotope shifts.
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1. Introduction

The recent trapping and laser cooling of magnetic dipolar atomic elements such as chromium [1],
erbium [2], dysprosium [3,4], thulium [5], and holmium [6], with the first three having been
cooled to quantum degeneracy [7—13], has opened new avenues of ultracold atomic physics
exploration. Specifically, the long-range and anisotropic character of the magnetic dipole-dipole
interaction provides a platform to investigate the role dipolar physics can play in quantum simula-
tion. Examples of the latter include proposals to realize topologically non-trivial systems [14—17],
and recent progress includes the study of the extended Bose-Hubbard model using erbium [18]
and the observation of the arrested implosion of a dipolar dysprosium BEC due to the balance
between the mean-field potential and quantum fluctuations [19-24].

Neutral atoms experience a force in an inhomogeneous light field. The resulting trapping force
arises from the interaction between the light field and the induced atomic dipole moment and
leads to the so-called Stark shift in the atomic energy level [25]. The total Stark shift can vanish
at certain wavelengths due to cancellation between multiple atomic transitions. Such “tune-out"
wavelengths for various atomic species have been predicted theoretically [26-29] and measured
experimentally [30-34]. This knowledge is particularly useful for engineering species-specific
trapping potentials. For example, in mixed-species experiments, one can create an optical lattice
potential for one species but not the other [35-38], and the interaction between the trapped
species and the background species allows for the implementation of novel cooling schemes
to realize new quantum phases [39]. This species-specific lattice can also be used to tune the
interspecies effective mass ratio of the trapped atoms [26], allowing for the flexible exploration
of collective dynamics [40,41]. Lastly, the coexistence of trapped fermions and a background
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Fig. 1. Schematic of lattice beam (red arrow; with polarization €) geometry used to measure
lattice depth by KD diffraction of the BEC (blue sphere). Green arrows indicate direction of
the applied magnetic field.

bosonic gas can potentially simulate phonon-like excitations in an optical lattice [26,42,43].

Aside from engineering trapping potentials for neutral atoms, knowledge of tune-out wave-
lengths is also useful in the context of the optical control of Feshbach resonances (OFR), a
promising technique to achieve time-varying and/or spatially modulated interatomic interac-
tions [32,44-46]. One can operate the OFR laser at a far-off-resonance regime to reduce heating
and loss rate and, if possible, at the tune-out wavelength of the targeted atomic species so that
the parasitic dipole force of the OFR beam is eliminated, as recently demonstrated by [32]. The
longer lifetime permits studies of the non-equilibrium dynamics of quantum gases with long
observation times when the tune-out wavelength is far-detuned from electronic transitions [32].

The precise determination of atomic transition strengths cannot rest on ab initio quantum-
mechanical calculations alone due to the electronic complexity of lanthanides like dysprosium,
the atom considered here. The complicated electronic structure of these open- f-shell lanthanide
elements presents a significant challenge for such analyses (see [47] and the recent study [48])
and experimental investigations are crucial for understanding their electronic structure. For
example, in [49], a semi-empirical approach that utilizes both theoretical calculations and
experimental data leads to the prediction of nine unobserved odd-parity energy levels in the
erbium atomic spectrum. More generally, improved knowledge of atomic polarizabilities, which
are informed by measurements of tune-out wavelengths [34], can guide choices of, e.g., optical
dipole trapping wavelengths and laser wavelengths for implementing Raman transitions for
realizing synthetic gauge fields [50-52]. It is in this spirit that we present the measurement of
the tune-out wavelength for the bosonic 9Dy near the narrow 741-nm transition.

We proceed by describing the experimental system in Sec. 2 before introducing the calculation
of Stark shifts in Sec. 3 and results of our measurements in Sec. 4.
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Fig. 2. Fractional first-order diffracted population at a constant laser power and wavelength.
Each point is an average of three measurements shown with 1o standard error. For optimal
SNR, we use the maximum pulse number up to which the quadratic enhancement holds
(i.e., np = 10). The first six data points are fit to Eq. (1). The dashed line is the resulting fit,
which yields a measured lattice depth of Uy = 0.20ER.

2. Experimental methods

Using linearly polarized light, we probe the total (scalar plus tensor) light shift in the vicinity
of the 741-nm transition by Kapitza-Dirac (KD) lattice diffraction [53], which is a standard
tool for optical lattice characterization [54-56]. See Fig. 1. The vector light shift vanishes for
linearly polarized light. See Sec. 3. The lattice depth U is measured in units of recoil energy
E, = (lk,)?/2m, where m is the mass of the atom, k, = 27/A is the grating wavevector, and A
is the wavelength of the laser.

We perform KD diffraction such that w, ¢ 2 1, where the recoil angular frequency is w, = E,./h
and the grating pulse length 7 is sufficiently long to induce a coherent oscillation between the
momentum states [57]. After turning off the light grating diabatically, the atoms project into
momentum states |2nfik,.), where n = 0, 1, +2, ... denotes the n'" order of the diffracted matter
wave. In the weak-lattice limit, Uy < 4E,, only orders with |n| < 1 effectively participate in the
coherent evolution, and the tune-out wavelength can be identified by decreasing population P; in
the first-order diffraction peaks as Uy approaches zero.

We employ a multipulse diffraction scheme to enhance the signal by constructive interference,
as demonstrated in [30]. We pulse an optical lattice along one spatial dimension near the 741-nm
transition with a detuning A = (wy, — wo)/(27), where wy, is the laser frequency and wy is the
resonant frequency of the 741-nm transition. In the weak lattice limit, the oscillation period
between |0) and |+2hk, ) approaches T = h/(4E,) = 111 us for 162Dy. As in [30], we use a
square-wave sequence with n,, pulses since there is an nf, enhancement in P; in the weakly
diffracting limit (n, Uy < 4E,) given by

nZ|Up|?
Py 28 ey
where the sign of Uy can be determined by the sign of the detuning A. The pulse sequence has a
50% duty cycle with a period of 111 us. Finally, we probe a range of A in search of the tune-out
wavelength.

The quadratic scaling of P; with respect to n,, in Eq. (1) no longer holds after the diffracted
peaks of atoms have sufficiently moved in space to lose coherence—and thus the ability to
constructively interfere—with the main condensate. This coherence time limit from overlap loss
sets the maximum pulse number where the quadratic scaling is valid. As shown in Fig. 2, the
Py enhancement efficiency starts to drop below quadratic at n, = 10, after which the atoms
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Fig. 3. Experimentally measured lattice depth versus detuning from the 741-nm transition
for 6 = O (triangles) and 8 = 7/2 (squares). Each point is an average of three measurements,
and the lines are fits to the expected functional form of the Stark shift from Eq. (3). Error
bars are 1o standard error.

in |+2hk, ) have traveled 62% of the Thomas-Fermi radius. Therefore, for accurate light shift
measurements, we employ a ten-pulse sequence to amplify P;. The choice of n,, is appropriate for
all A used in our measurements, because we operate in the weak-lattice limit, thus the coherence
time only depends on k..

The tune-out wavelength is measured in terms of the detuning, denoted Ag, from the 741-
nm transition frequency. We use a wavelength meter (HighFinesse WS/6 200) to monitor the
frequency of the lattice beam derived from a Ti:Sapphire laser. We calibrate the wavelength
meter against a frequency-stabilized 741-nm diode cooling laser with a <10 kHz/h drift rate 8]
via a beat note setup. While simultaneously monitoring the frequency of the lattice beam and
the cooling laser on the wavelength meter, we combine beams of both lasers onto a high-speed
photodetector (Electro-Optics Technology ET-4000). We then compare the beat signal frequency,
measured up to +8 GHz, to the frequency difference given by the wavelength meter. Applying
this calibration beyond the range of +8 GHz yields an uncertainty of 10 MHz in the frequency
measurement.

We prepare Bose-Einstein condensates (BECs) of '>Dy using methods described in [12].
The resulting trap frequencies are [ Frr fys fz] = [62(2),32(4), 113(2)] Hz, where gravity is

along 2. We initiate KD diffraction with a nearly pure BEC of 5 x 10* atoms in the maximally
stretched ground state |J = 8, m; = —8). As illustrated in Fig. 1, the 1D lattice is formed along
X + 9 by retroreflecting a 0.20(2)-W collimated beam with a diameter of 950 um. The light
field polarization is kept linear along Z, purified by a polarizing beam splitter. Therefore, any
anisotropy in Ag should be attributed to the tensor light shift since the vector light shift is
identially zero for linearly polarized light (see second term in Eq. (2) below). To probe the
anisotropy in Ay, we perform the measurement at two different field orientations Z and % — 9,
both at a field magnitude of 1.580(5) G, to realize 6 = 0 and 8 = /2 in Eq. (2). We note that
this field is away from any Feshbach resonances [58].
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Fig. 4. (a) Calculated total light shift (arbitrary unit) versus detuning from the 741-nm line
for both 8 = 0 and 6 = n/2. The arrows indicate the positions of the measured A points.
The 160-GHz window corresponds to 5 cm™~!. (b) Calculated total light shift (arbitrary
unit) for both polarizations between laser frequencies (wavelengths) DC and 24,000 cm™!
(417 nm). The cycling transitions (J/ — J/ = J + 1) are indicated in turquoise [4,59]. The
large anisotropy at far-off resonant frequencies is likely a result of incomplete knowledge of
atomic transition data; see main text for details.

3. Stark shift calculation

For a single transition from the ground state |F, mr) to an excited state |F' “om £, the light shift
of the ground state with an applied optical field of angular frequency w is given by

>

2 2
= 2= 2 mr o 3cos? 6 -1\ |3m% —F(F+1)
AU, mp) = —01(0)|E(()+)|2 —aWM [IE(() ) % E[()J')]Z —_ = 0/(2)|E(()+)|2 ( ) [ £

2 FQF - 1)

o _  2wrr KFIId]IF)
a - )
3R(2F + 1)(‘”12?1?' - w?)

@) = (L1)F+EH 6F L1 1) wKFlId]F)?
(F+DQF+1) \F F F'| pl,, —w?)’

@@ = (L1)FHE 40F(2F — 1) 11 2\ wppKELdF)P
3F+DQF+DHQF+3) \F F F'[  hwl,, - w?)

k)

(2)
where EE” and E’éf) are the rotating and counter-rotating part of the optical field; 6 is the
angle between its polarization and the quantization axis set by the magnetic field; wrp- is the
transition angular frequency; @@, a1, and a® are the scalar, vector and tensor polarizabilities;
and |[{F| Icfl |[F’Y|? is the reduced dipole matrix element [60-63]. As in [47], we add a constant
offset of @’ = 94.27 atomic units (a.u.) to the calculated scalar polarizability to match the latest
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experimentally measured scalar polarizability at DC for Dy [64]. A similar correction for
the tensor polarizability may be necessary but is yet unmeasured. From Eq. (2), we note that
while the scalar part preserves spherical symmetry, the vector light shift is dependent on the
cross product of the rotating and counter-rotating electric fields and therefore vanishes if the
polarization is linear. The tensor term also breaks spherical symmetry with a 6-dependence such
that it is maximized at @ = 0 and minimized at § = 7 /2.

The light shift of alkali atoms at large detuning is due solely to the scalar shift and is spherically
symmetric. For these atoms, when the laser detuning is large compared to the hyperfine splitting of
the excited state, the hyperfine levels become effectively degenerate and the optical field interacts
directly with the fine-structure transition. That is, the hyperfine transition ¥ — F’ is replaced by
the fine-structure transition J — J’, wgp- is replaced by wy;-, and the polarizabilities can be
directly expressed by the fine-structure dipole matrix elements. For alkali atoms in the ground
state |J = 1/2, L = 0), the tensor polarizability «® vanishes at large detuning, and the vector
polarizability a!) is canceled by opposite contributions from the D; and D; lines [34,60,61].

This spherical symmetry does not hold for Dy from the ground state |J = 8, L = 6) due to its
large orbital angular momentum (bosonic Dy has zero nuclear spin). For example, the tensor
polarizability a;i)l for the 741-nm J = 8 — J’ = 9 transition does not vanish like the alkali
J = 1/2 — J’ transitions. On the contrary, it is on the same order of magnitude as the scalar
polarizability agg)l for all detunings (a'%)l e~ —0.7a§3)1).

4. Results

We measure P; and determine Uy using Eq. (1). Fig. 3 shows the measured Uy with respect to the
detuning A from the 741-nm resonance for both § = 0 and 6 = /2. We find that P; decreases as
the laser is detuned further on the blue side of the 741-nm transition. Eventually, P; drops below
the noise floor in our absorption image. As we further increase A, we observe a revival in Py,
indicating a sign change in the total light shift. We observe a clear polarization-dependence in
Ao, which differs by more than 20 GHz for the two polarizations.

We perform a least-squares fit to the data to quantitatively determine A, using

B
Uo=A+~ 3)

as the fit model, where A and B are free parameters. Due to the large number of dysprosium
lines, it is intractable at present for us to use the exact analytical form of the total light shift as
the fit function. However, since the detuning from all lines other than the 741-nm transition is
large, we simply treat the contribution from these other lines as a constant background. The fitted
curves cross zero at Ag(@ = 0) = 7.7(1) GHz and Ay(6 = n/2) = 29.9(1) GHz, resulting in a
22.2-GHz polarization-dependent anisotropy in Ag. The ratio of this anisotropy to the detuning
from the 741-nm resonance is nearly five orders of magnitude larger than ratio of Rb’s tune-out
wavelength anisotropy (~44 MHz) to the detuning (~10 nm) from the D and D, lines [34].

We also compare the measured Ag values to the calculated Stark shift in Fig. 4. We compute
the total Stark shift using the formalism presented in Section 3. To account for all the known
transitions of dysprosium, we sum over Eq. (2) for the 26 lines documented in [47], replacing
the listed theoretical matrix elements with experimentally measured values when possible (e.g.,
the 741-nm transition [59]). The calculated values—ABh(H =0) = 10.4 GHz and Ag‘(@ =n/2) =
32.2 GHz—differ from the measured values by 26% and 7%, respectively.

Furthermore, while [59] reports an experimentally measured linewidth of 1.78(2) kHz for
the 741-nm excited state, we extract a linewidth by setting the reduced matrix element for the
741-nm transition w741 as the free parameter and minimize the error function

Equa) = Y. [Af©) - AO(Q)]i741 ’ 4)

6=0,7/2
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which is the discrepancy between the calculated tune-out wavelengths Ag’, evaluated at p74;,
and the experimental values Ag at 8 = 0 and 8 = 7/2. Despite the lack of the comprehensive
measurements of all matrix elements of dysprosium [47], we obtain 1.62(1) kHz, which differs
from the experimental value reported in [59] by 10%.

Figure 4 suggests that the total light shift at § = 0 and 6 = 7/2 should differ by around
50% near 1064 nm (9,398 cm™!), a common wavelength for optical dipole traps, and the one
employed here. To explore this, we measure the trap frequency along Z for fields along Z and %,
which correspond to 8 = 0 and 6 = 7/2, respectively. Nevertheless, we find that the trap shape is
isotropic to within 3%, in contradiction to the prediction. This isotropy has also been predicted in
the optical trapping of erbium, another lanthanide atom, at 1064 nm using 1284 lines, 33 of which
have been observed experimentally [49]. A similar calculation has been recently conducted for
dysprosium [48]. In summary, a more complete knowledge of the dysprosium atomic spectrum is
required to improve the agreement between theoretically predicted and experimentally measured
tune-out wavelengths, and to properly account for the far-off-resonance regime.

5. Conclusions

The measurement of the tune-out wavelengths for "Dy near the narrow 741-nm transition has
been presented, along with a calculation that reproduces these wavelengths within a few GHz. As
also predicted, we observe an anisotropy in the tune-out wavelength as a function of the relative
angle between the optical field polarization and the quantization axis.

While this work focuses on the tune-out wavelengths of '®’Dy, those of the other bosonic
isotopes of Dy are related to '9?Dy’s by the isotope shifts, 1214(3) MHz and -1338(6) MHz for
164Dy and 90Dy, respectively [59], since nuclear effects play little role within the resolution of
our measurement and bosonic Dy is I = 0. However, the wavelengths of the fermionic isotopes
cannot be accurately determined with this data since those isotopes do possess hyperfine structure
on the GHz scale. Analogous measurements using Kapitza-Dirac diffraction for (near) degenerate
fermions is much more challenging due to the intrinsically larger momentum spread.
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