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Abstract

Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the
experimental investigation of ultracold gases made of highly magnetic atoms has blossomed.
The field has yielded the observation of many unprecedented phenomena, in particular those in
which long-range and anisotropic dipole—dipole interactions (DDIs) play a crucial role. In this
review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique
for exploring ultracold and quantum physics as well as to give a thorough overview of
experimental achievements. Highly magnetic atoms distinguish themselves by the fact that their
electronic ground-state configuration possesses a large electronic total angular momentum. This
results in a large magnetic moment and a rich electronic transition spectrum. Such transitions
are useful for cooling, trapping, and manipulating these atoms. The complex atomic structure
and large dipolar moments of these atoms also lead to a dense spectrum of resonances in their
two-body scattering behaviour. These resonances can be used to control the interatomic
interactions and, in particular, the relative importance of contact over dipolar interactions. These
features provide exquisite control knobs for exploring the few- and many-body physics of
dipolar quantum gases. The study of dipolar effects in magnetic quantum gases has covered
various few-body phenomena that are based on elastic and inelastic anisotropic scattering.
Various many-body effects have also been demonstrated. These affect both the shape, stability,
dynamics, and excitations of fully polarised repulsive Bose or Fermi gases. Beyond the

* Author to whom any correspondence should be addressed.

1361-6633/23/026401+90$33.00 1 © 2022 IOP Publishing Ltd  Printed in the UK


https://doi.org/10.1088/1361-6633/aca814
https://orcid.org/0000-0001-7196-5721
mailto:chomaz@uni-heidelberg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6633/aca814&domain=pdf&date_stamp=2022-12-30

Rep. Prog. Phys. 86 (2023) 026401

Review

mean-field instability, strong dipolar interactions competing with slightly weaker contact
interactions between magnetic bosons yield new quantum-stabilised states, among which are
self-bound droplets, droplet assemblies, and supersolids. Dipolar interactions also deeply affect
the physics of atomic gases with an internal degree of freedom as these interactions intrinsically
couple spin and atomic motion. Finally, long-range dipolar interactions can stabilise strongly
correlated excited states of 1D gases and also impact the physics of lattice-confined systems,
both at the spin-polarised level (Hubbard models with off-site interactions) and at the spinful
level (XYZ models). In the present manuscript, we aim to provide an extensive overview of the
various related experimental achievements up to the present.
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1. Introduction to dipolar physics

Ultracold gases have drawn considerable interest since the
realisation of quantum degenerate Bose [1-3] and Fermi [4—0]
gases in the mid-to-late 1990s. This interest stems from many
quarters within the physics community, but especially from
those interested in using ultracold gases as test-bed systems
for theoretical models, for exploring their properties as new—
highly controllable—examples of strongly correlated matter,
and for engineering them for quantum information processing
[7-9].

Interparticle interactions fundamentally determine the
properties of a quantum gas. Even in the weakly interacting
limit, they dictate its shape, density, and the way it becomes
excited. In the strongly interacting limit, even more drastic
modifications of the system’s properties can arise, such as the
appearance of exotic phases or excitation modes not describ-
able by effective single-particle models. On the other hand,
interactions can lead to inelastic processes that cause popula-
tion loss from a trap and limit the accessible range of, e.g. tem-
perature and density.

Quantum gases are typically dilute (compared to liquids
and solids) and this allows their short-range interaction at
low temperature to be accounted for in a simple fashion by a
two-body (isotropic) contact pseudo-potential [9, 10]. To go
beyond the case of isotropic and short-range interactions—
say using an ultracold system possessing strong dipolar

interactions—gives access to a wide variety of new physical
phenomena [9, 11-17]. This review focuses on the experi-
mental achievements of the last 15 years to study such phys-
ics using one particular example of a dipolar system, viz.,
ultracold quantum gases made of atoms possessing a large
magnetic dipole moment.

1.1. Quantum gases with dipolar interactions

Several platforms exist with which to study the effect of
DDIs in the ultracold gas context. For example, electric dipole
moments may be induced using heteronuclear molecules
[18-20] or Rydberg atoms [21-24] in an electric field or
through the use of light-induced dipoles [16]. We note that
long-range interactions, beyond the dipolar 1/ scaling, can
also be achieved in ultracold gas systems in other ways.
For example, one method uses optical cavity or waveguide-
mediated interactions, which are fixed to be either global in
range [25, 26] or may be tuned between long and short range
[27-29]. Phonon-mediated interactions in trapped ion systems
are another example of tunable-range interactions [30]. These
systems often exhibit dipole strengths orders of magnitude lar-
ger than what is achievable with magnetic dipoles. However,
other limitations can arise in these systems, e.g. short life-
times, density limitations, and/or rapid dissipation. We briefly
discuss the case of electric dipolar systems before exclusively
focusing on magnetic systems.

1.1.1. Electric dipoles.  There is no permanent electric dipole
in an atom or in a molecule in its non-degenerate rotational
ground state due to their rotational symmetry. Yet when an
external electric field E couples to the electric dipole moment
operator, it mixes eigenstates of opposite parity. As the rota-
tional symmetry is broken, an electric dipole moment is
induced. The field to induce the electric dipole moment is low-
est when the two states of opposite parity are closest in energy.

Some systems possess degenerate states of opposite par-
ity, which allows the induced electric moment to arise at van-
ishingly small electric field [31]. Rydberg states in a hydro-
gen atom are an example of such a system: they possess
electronically excited states of opposite parity that can be
arbitrarily close. The electric dipole moment scales as n?, with
n the principal quantum number. Associating a Rydberg atom
with a ground-state atom allows to form a Rydberg molecule
with a permanent electric dipole moment [32]. Despite short
lifetimes due to spontaneous emission, black-body radiation
[33], and collisions, Rydberg gases have, over the last 10
years, been the centre of much experimental and theoretical
activity. In particular, experiments are ongoing that investig-
ate strongly correlated dipolar gases, lattice spin models, and
Rydberg molecules [21, 22, 24, 34-38]. They are even the
basis for a competitive quantum computing platform, which
has been pushed forward by several newly founded companies
(https://pasqal.io/, https://coldquanta.com/, www.quera.com/,
www.atom-computing.com/).

A second, very productive field of research is the manip-
ulation of heteronuclear molecules. In these, an electric
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field mixes two rotational states (for example N =0 and
N = 1) within the electronic molecular ground state. Ultracold
molecular systems with a large electric dipole moment
include: KRb [39-42], NaK [43-45], RbCs [46, 47], NaRb
[48], KCs [49], LiCs [50], NaLi [51, 52], StF [53, 54], H,CO
[55], CaF [56, 57], BaF [58]and YO [59, 60], HO [61, 62].
Due to their intrinsic complexity, cooling molecules has been
an extremely challenging task. Recently, after many years of
dedicated efforts [40, 43], the first quantum degenerate gas
of polar molecules has been achieved with KRb [41, 42].
Many of the molecular systems have been shown to experi-
ence strong and rapid losses, which unfortunately presents an
additional challenge for creating dense and ultracold samples.
For the case of KRb, it is believed that the exo-energetic
reaction KRb + KRb — K+ Rb, drives the decay [63].
For other molecular systems such as NaK and NaRb, for
which the equivalent reactions are endo-energetic, the life-
time also appears rather short at large densities for reasons
that are yet to be fully understood [64]. The impact of losses
could be reduced thanks to an ingenious control of their spa-
tial dependence: confining molecules in a quasi-two dimen-
sional geometry enables one to take control off the stereody-
namics of molecular reactions [65]. Producing molecules in
three-dimensional optical lattices [40, 66] or optical tweezers
[67, 68] prevents molecules from inelastically colliding due to
their physical separation. Ultracold molecules now constitute
a fast-expanding and promising field, especially for quantum
simulation [19, 20].

1.1.2. Magnetic dipoles. In contrast to the situation with
electric dipoles, elementary particles can have permanent
magnetic dipoles even at zero field [69]. As a consequence,
the effect of magnetic DDIs on quantum gases can be studied
under full rotational symmetry at arbitrarily small magnetic
fields. The magnetic dipole moment in atoms is primarily asso-
ciated with the spin (S) and orbital (i,) angular momentum of
the electrons. The nucleus may also have a magnetic dipole
moment, although it is three orders of magnitude smaller than
the electron’s. Nevertheless, the nuclear spin 1)) couples to the
electronic spin within the atom, giving rise to the hyperfine
structure (F = L 4 S +I). Therefore, the sensitivity of a given
Zeeman sublevel to magnetic fields indirectly depends on the
nuclear spin. Only the fully stretched atomic state (i.e. max-
imal F =L+ S+1 and |mp| = F) reaches the full magnetic
moment provided by the electrons. Here, and all along this
review, X and my are the quantum numbers associated with the
norm of the angular momentum operator X and its projection
along the quantization axis, respectively. Additionally, we use
the dimensionless version of the vectors and operators of angu-
lar momenta and spins such that the eigenvalues associated
to the norm and projection of X are simply \/X(X — 1) and
my. In the above, X = {F,L,S,I}. Throughout the remainder
of this review, we will usually denote by S the total angular
momentum of a magnetic particle.

It is possible to study dipolar physics with alkali atoms
[70]. However, the energy scale associated with DDIs is rather
small, typically in the Hz range. Therefore, significant focus

has been on so-called highly magnetic atoms, such as chro-
mium (Cr; with a dipole moment of 6 Bohr magnetons, pp),
erbium (Er; 7 up) and dysprosium (Dy; 10up). In principle,
other highly magnetic atoms can be studied, such as holmium
(Ho; 9 pup), thulium (Tm; 4 pg) or europium (Eu; 9 ) [71-74].
Moreover, it was demonstrated that one can use a Feshbach
resonance (FR) to combine two Er atoms into a loosely bound
molecule [75], which may possess up to twice the magnetic
moment of the original atoms. Likewise, a nearly 20uz-large
magnetic moment is accessible with Dy, molecules [76].
These systems are described in detail in section 2.

1.2. The dipole—dipole interaction

Generally speaking, the DDI between two dipoles, 1 and 2,
separated by r yields the following potential:

Yd (dr-r)(dsr)
V. = dy-d,-3 1
aa(r) ol OB 2 ; ey
where d; is the dipole moment of particles i = [1,2] and 74
is the dipolar coupling constant and depends on the electric or
magnetic nature of the dipoles. This expression is valid at long
distances, where electron orbitals do not overlap.

o Magnetic dipoles: Classically, the dipolar interaction
between two magnetic particles corresponds to the interac-
tion of the spin Sy of the particle 1 with the magnetic field
created by the spin S, of the particle 2, and vice-versa. Here,
Sisa generic angular momentum which in general is given
by the total angular momentum F, see section 1.1.2. For a
magnetic particle of spin S;, the dipole moment is given by
J,- = gS,uBSi, where gg is the g-factor of the spin S and the
dipolar coupling constant 4 = po is the vacuum magnetic

permeability. We denote d> = %:‘3)2 and Cgq = S%d? so

that Vyq(r) o Szrglz =S4 see, e.g. section 1.3.3. These con-
stants set the DDI strength.
e Electric dipoles: For electric dipoles, 74 = 1/€p, with ey the

vacuum electric permittivity.

We now compare the magnetic and electric DDI strengths.
Electric dipoles relate to charge displacement within a particle.
Typical electric dipoles of molecules are of magnitude eay,
given by the displacement of an elementary electric charge e
over the typical size of an atom, set by the Bohr radius ag.
In Rydberg atoms, the characteristic displacement of the elec-
tric charge is set by the Rydberg orbital radius, which scales
as n?, the square of the Rydberg principal quantum number
n; typically n is of order a few tens. The dipole moment of a
Rydberg atom is thus typically 7> times than that of an atom in
the ground state. The atomic magnetic dipole scale is given by
us. The typical ratio between the DDI strength of magnetic

2
Mo 2
Ca)e = /4

where a2 1/137 is the fine structure constant. The ratio is
further reduced by a factor n* when comparing to Rydberg
atoms. Thus, the typical magnetic DDI strength is orders of
magnitude smaller than the typical electric DDI.

atoms and of polar molecules is therefore
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1.3. Main characteristics of dipolar interactions

In the absence of DDIs, ground state atoms interact through
van der Waals interactions. These interactions are short
ranged, 1/r°, and are typically isotropic because the electronic
cloud of most atoms is spherically symmetric in the ground
state [77]. In contrast, the DDI introduced in equation (1) has
a long-range 1/7° character. It is also anisotropic and can be
either attractive or repulsive depending on the relative ori-
entation of the dipoles; in particular, its elastic part varies as
1-3cos? 6, where 0 is the angle between the relative position
of the particles and their direction of polarisation.

1.3.1. Definition of ‘long-range.  Whether an interaction, in
particular the DDI, is long range depends on the exact sys-
tem under study, its dimensionality, and on the exact physical
question addressed. We discuss below a number of physical
questions that lead to slightly different definitions of the long-
range character of the interaction at hand, with particular focus
on power law potentials U(r) o< 1/r".

e Collisional point of view (in 3D). Physically, for short-
range interactions, particles need to approach at small dis-
tances to interact. By decomposing the relative motion of the
particles into the relative orbital angular momentum eigen-
states (so-called partial waves), denoted by the quantum
numbers (/,m) for the momentum’s norm and projection
eigenvalues, one finds that at low collision energy, the cent-

2
LD prevents particles from approaching

rifugal barrier =~
in higher partial waves / > 0. That is, the contributions from
high partial waves vanish. For a 1/r" interacting potential,
the scattering phase shift ¢;(k) at low collision momentum
k scales as K+ if [ < (n—3)/2 and as k"~? otherwise
[78, 79]. Therefore, for n > 4, the interaction is purely s-
wave at low energy and short ranged. In contrast, for n =3,
0;(k) o k for all partial waves. Therefore, all partial waves
contribute to the scattering process even at low collision
energy. The interaction is then long range and can be felt
beyond the centrifugal barrier. The long-range character of
the DDI is spectacularly manifest in the fact that polarised
fermionic dipolar gases thermalize despite the absence of
s-wave interactions (due to the Pauli exclusion principle).
This is in contrast to nondipolar polarised Fermi gases; see
section 3.

Note: A thorough treatment of the above should account
for the fact that the DDI is not a pure central poten-
tial U(r) < 1/r* due to its anisotropic character. This
is of particular consequence for inelastic dipolar colli-
sions, which necessarily involve the anisotropic character of
the interaction—see section 1.3.2—and are actually short-
range processes at large magnetic field despite the same 1/7°
scaling as their elastic counterparts. See section 3.3.3.

We also remark that the scattering picture can be modi-
fied in the presence of strong confinement, in particular in
reduced dimensions; see, e.g. section 7.1.

o Thermodynamic point of view. Short-range interactions
lead to an energy that is thermodynamically extensive. This
is true when fooo U(r)d°r converges, which only happens

when n > D, where D is the spatial dimension. Thus, from
this point of view, 1/7° interactions are long range in 3D,
but short range in 2D and 1D. Long-range-interacting sys-
tems possess peculiar thermodynamic properties, such as the
non-equivalence of thermodynamic ensembles, the possibil-
ity for negative specific heat, and the spontaneous formation
of structures. These arise because the hypothesis that the
energy is additive in the thermodynamic limit—i.e. given
the energy of two subsystems A and B, E(AUB) = E(A) +
E(B)—breaks down when the interaction between the sub-
systems cannot be neglected [80]. The status of DDIs in 3D
is therefore marginal since while there are distant couplings
between sub-systems A and B, the integral [~ U(r)d’r does
converge due to the peculiar d—wave shape of DDIs.

e Many-body physics perspective. In the context of many-
body physics, DDIs may lead to qualitatively new beha-
viour, even when D < 3. For example, the Mermin—Wagner
theorem precludes the possibility of spontaneous break-
ing of a continuous symmetry and of long-range order in
(homogeneous) low-D systems. However, in 2D, this applies
only for short-range interacting systems with n >4 [17, 81].
Therefore, in this context, DDIs can be seen as long-ranged
even in 2D. Indeed, it has been predicted that ferromagnetic
ordering should be stable in 2D for DDIs [82]. The mean-
ing of long range in 1D for the DDI will be addressed in
section 7.1.

e Mathematical physics perspective. Let us for complete-
ness also briefly mention the mathematical physics point of
view of the meaning of ‘long-range interaction.” For an inter-
action potential ~1/r", the scattering wave is only described
by an asymptotic outgoing spherical wave weighted by an
angle-dependent scattering amplitude for n > 1. For n < 1,
e.g. the Coulomb potential, there are logarithmic correc-
tions to the general form of the outgoing spherical wave,
which defines another border between long and short-range
potentials.

1.3.2. Consequences of anisotropy. ~ The anisotropic charac-
ter of the DDI greatly impacts the properties of dipolar gases.
It introduces profound differences from the point of view of
two-body physics and scattering properties—see section 3—
and also on the collective many-body properties of quantum
degenerate dipolar gases. In particular, the stability diagram
of dipolar condensates is affected by an interplay between the
anisotropy of the trap and the anisotropy of the interactions;
this will be described in sections 4 and 5. We now briefly
describe a few basic consequences of this anisotropy.

The DDI is attractive in one direction and repulsive in the
other two directions. The shape of the interaction follows a d-
wave form mathematically described by the j components of
the spherical harmonics Y3, in particular with j=0 in a fully
polarized situation. This means that when integrated over all
space in 3D, the DDI between polarised dipoles converges to
zero for a 3D homogeneous gas. Consequently, the mean-field
(MF) physics of dipolar gases is dominated by border and
boundary effects: the average interaction between particles
will strongly depend on the shape of the cloud. In particular,
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an elongated trap along the axis of the dipoles will favour the
collapse of the gas due to the predominately attractive inter-
action. The stability of dipolar condensates as a function of
geometry is described in section 4.

Another consequence of anisotropy is the existence of a
special angle between the dipoles and the interatomic axis,
0, = arccos /1/3 = 54.74°, at which DDIs vanish. More
generally, controlling this angle can be used to tune the
strength of DDIs, especially when performing experiments in
reduced dimensions, as described in section 7.1. In a scheme
inspired from NMR techniques, it has been suggested [83] and
demonstrated [84] that by using time-varying magnetic fields,
it is possible to time-average the DDI to reduce its amplitude
or reverse its sign.

Finally, the anisotropy of the interaction has fundamental
consequences from the point of view of collisions. The inter-
action potential is not central, and therefore the orbital angular
momentum does not need to be conserved during a collision.
The expansion in spherical harmonics yields the selection rule
for angular momentum transitions Al = (0,+2). Moreover,
partial waves of differing / that contribute to the scattering
become coupled. Finally, the angular momentum of the atoms’
internal state may also change during the collisions, opening
the possibility for inelastic processes.

13.3. Physical processes associated with  dipolar
interactions.  In view of describing the physical processes
at play when two dipolar particles collide, it is useful to
rewrite the dipolar potential between atoms 1 and 2 in terms
of quantum operators [85]:

d? 1 S e
Vaa(r) = — KS?.SE +5 (858 +57.57)

3
— 7 (228 +r7S +rtsy)

x (2285 + 71785 +r78,) |, ()

where (x,y,z) is the normalised unit vector connecting
both atoms, r* = (x+iy), r~ = (x —iy), ST = (§* +i$”), and
S~ =(8*—i$). Note that both here and throughout this
review, we use the dimensionless version of the vectors and
operators of angular momenta and spins.

We describe three physical processes that arise from this
expression:

(a) Elastic dipole-dipole interactions, where the spin of
each atom is conserved in time:

d2
Vel(r) = 73Sﬁ.sg (1-32%). (3)

The experimental manifestation of this anisotropic Ising
term on quantum degenerate dipolar gases has been
extensively studied. It is the main process at play for
most of the results presented in this review article: see
section 3 on scattering physics, sections 4 and 5 on the col-
lective properties of dipolar gases, the stability diagram,

the instability dynamics and the stabilisation of so-called
dipolar droplets, section 7.1 on integrability breaking in
1D gases, and section 7.2 on the extended Bose—Hubbard
model.

(b) Exchange interactions, where two atoms exchange
one unit of spin (Zeeman) excitation, while the total
magnetisation and energy is conserved (in the absence of
quadratic Zeeman effects):

1 d? o
Ve (r) = 773(51#52 +87.57) (1-32). &)

This exchange term can drive spin dynamics at constant
magnetisation as described in section 6.2.3 and dictates the
physics of spinor dipolar gases in deep lattices, which is
the topic of section 7.3. We note that the elastic and the
exchange terms result in an anisotropic Heisenberg-like
term (the so-called XXZ model).

(c) Relaxation terms describe the modification of the longit-
udinal magnetisation of the pair of atoms during the colli-
sion. There are two possible processes:

3d? - e
Vaa () =—3507)%7.8;,
rely 3d2 +/cz o— 7 o—
Vi (r) = 5 (8785 +55.57), (5)

plus the conjugate processes. Spin momentum and angu-
lar orbital momentum exchange while the magnetic energy
is transferred into kinetic energy. The second process
describes single spin flips, while the first describes double
spin flips (i.e. both atoms flipping their spin). These terms
underlie most of the results presented in sections 3.3
and 6, the latter describing spinor physics with free
magnetisation.

1.3.4. Two-body dipolar scattering.  The cross section clas-
sically describes the area, transverse to the relative motion,
within which two particles must meet to scatter. In other
words, the scattering cross section is related to the typical dis-
tance at which the wavefunction of the relative motion is dis-
torted by the interaction. Employing the Heisenberg uncer-
tainty principle, this distance ry for the DDI is typically set
by an interplay between the DDI strength S?d*/r) and the
energy cost to bend the wave function by an amount ry. Setting
§2d? /r3 = h* /mr’ defines the dipolar length [86]:

ra  S2d’m _ Cyam

332 3

aga = (6)
where m is the atomic mass. The order of magnitude of the
scattering cross section is:

_ S*d*m?

= %

o~ d

Likewise, one defines the range of the van der Waals poten-
tial Vygw = —Cs/7® as rygw = (mCG/hz)l/“, which sets the
typical scattering cross section due to short-range interac-
tions. The lengths ry,w and aqq are typically in the nm range;



Rep. Prog. Phys. 86 (2023) 026401

Review

i.e. much larger than both the Bohr radius ag and the typical
impact parameter at room temperature.

In section 3, we will describe the scattering theory for both
dipolar and van der Waals interactions. The DDI cross sections
are presented based on a first-order Born approximation, and
the role of exchange statistics in these expressions is discussed.

In contrast to the van der Waals case, the dipolar cross
section depends on only the mass of the atoms and their
dipole moment. Because it is independent of the details of
the molecular potentials, dipolar scattering assumes a univer-
sal character. One remarkable aspect is that the dipolar cross
section follows the same universal scaling of equation (7)
(up to numerical factors) regardless of particle exchange stat-
istics. In particular, identical fermions have a finite dipolar
cross section even at vanishingly small collision energy.
This is a direct consequence of the long-range character of
DDI, as discussed above. This topic will be discussed in
section 3.2. Inelastic dipolar scattering will be discussed in
section 3.3.

Finally, by integrating over all directions of the collision,
the scattering theory outlined above obscures one of the central
features of dipolar scattering, the anisotropic dependence on
the colliding angle, which has been observed in both Er and
Dy. This is the topic of section 3.4.

1.3.5. Momentum-space DDI expression.  The form of the
Fourier transform of the interaction potential often provides
insight regarding the physics of interacting particles. For
example, it facilitates the description of two-body scattering
physics because scattering theory tends to formulate the wave-
function in terms of momentum states. It also proves con-
venient in discussing elementary excitations of a quantum
gas, which, in a uniform system, are characterised by a well-
defined momentum.

The Fourier transform of the elastic part of the DDI,
equation (3), is:

Vaa(k) = /eik’Vg(li(r)d3r = % [3cos(6)* —1],  (8)

where 0, is the angle between k and the polarisation of the
dipoles. This form of the interaction is remarkable when com-
pared to the contact interaction. While neither the Fourier
transforms of the contact interaction nor the DDI depend on
k, the Fourier transform of the DDI retains a nontrivial angu-
lar dependence. Such a feature can give rise to an anisotropic
dispersiorgelation of excitations, as described in section 4.
That Vgq(k) does not depend on the modulus of k can
be understood from dimensional analysis: [ d”rexp(ikr) r% is
independent of k for D =3. On the other hand, in a 2D sys-
tem (D =2), we expect a different behaviour with a linear
dependence on k for small k. Quite generally, the fact that the
Fourier transform of V44 has a k dependence is an important
feature for D # 3 systems, in that the DDI introduces a tend-
ency in these systems to develop structured excitations (rotons,
solitons) and exotic phases (supersolid, crystals of quantum
droplets, etc). These excitations are described in section 4. The
quantum droplets occur when the gas spontaneously forms

stable spatial arrangements of liquid-like droplets in dipolar
Bose-Einstein condensates (AIBECs) driven to the instability
point of mechanical collapse. This is related to the emergence
of new phases stabilised by beyond-mean-field (BMF) effects
and is described in section 5; see also section 1.4.1.

1.4. Many-body dipolar physics

The two-body processes outlined in the previous paragraphs
are the elementary phenomena behind the very rich phe-
nomenology associated with many-body physics in dipolar
quantum gases. We introduce the various physical effects that
will be further discussed in the sections 4-7.

14.1. Dipolar Bose quantum gases

14.1.1. Spin-polarised dipolar Bose quantum gases in the
mean-field regime.  Many-body physics is often intractable.
However, most of the first experiments on ultracold gases
of magnetic atoms have been performed with weakly inter-
acting BECs, and the associated theory is tractable because
interatomic correlations are small and so MF theories apply.

Due to Bose stimulation, in which the population of bosonic
atoms at low energy favours the occupation of a unique
single-particle orbital, it is natural to propose a variational
ansatz where the many-body wavefunction is assumed to be
o(ri,orwit) = ITicy ¥ (i)

The single-particle wave-function ) (r, ) is taken as a vari-
ational parameter to minimise the system’s total energy. This
approach leads to the well-known Gross—Pitaevskii equation
(GPE), which has been found to describe most of the proper-
ties of dilute BECs [9, 87-89].

When all atoms are polarised (and the polarisation axis set
to z), the GPE of a dBEC is:

—R2V?
2m

m(?,w[ + V() + g [ P+ Baa(rt) [ ¥, (9)

. . _ 4n h2 . .
where Vi, (r) is t.he trap potgntlal, g="ais the coupl%ng
constant describing contact interactions of s-wave scattering

length a; see also sections 2.4 and 3 [9, 90]. The MF associated
with the DDI is ®qq4(r,7) [91, 92]:

Bug(r,1) = / ' |6 O Usalr =), (10)

1 —3cos?(0)

Uad(r) = Cad 3 ) (11)

I

where 0 is the angle between r and the polarisation axis z. Only
the elastic part of the DDI, equation (3), contributes due to
polarisation in a fully stretched Zeeman substate. This term is
non-linear and nonlocal. To quantify the strength of the DDI
with respect to the contact interactions within a BEC, it is use-
ful to introduce the dimensionless parameter:

Caam _ ag

T 324 a (12)

€dd
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We note that writing the GPE of a dipolar BEC in the
form of equation (9) is in fact non-trivial. Its validity, which
relies on describing the total inter-particle interactions via an
effective pseudo-potential that is the simple sum of the con-
tact pseudo-potential and the DDI potential, has been long
debated. The efforts to prove the validity of this treatment as
well as identify its limitation will be reviewed in section 4.1.1.
The applicability of the nonlocal GPE equation (9) for the case
of weakly interacting trapped BECs of magnetic atoms in the
stable regime, e.g. £4¢ < 1 in a 3D isotropic trap, has been sup-
ported by numerous theory and experimental works. In this
regime, the anisotropic and nonlocal character of equation (10)
substantially modifies the static and dynamical properties of
the BEC compared to contact-only BECs. This will be extens-
ively discussed in section 4.

1.4.1.2. Spinor dipolar Bose quantum gases. In the pres-
ence of spin degrees of freedom, the exact form of the GPE
depends on the spin of the atoms and can be found in [93]. Tak-
ing, for example, the case of a spin-1 atom—i.e. the simplest
example pertaining to bosonic physics—the GPE takes the
form:

d,
th—

|:h2vz

m + Vul(r) — pm+ qmz} U

1
+COnwm+Cl Z S-sm,m’wm’

m'=—1

1
+Cdd Z b-sm,m’me

m'=—1

13)

where 1), denotes the macroscopic wave function associated
with the spin state of projection quantum number m. The terms
in p and g describe the linear and quadratic Zeeman energy
shifts of the spin states, respectively. The trap is assumed to be
spin-independent. The terms proportional to ¢ and ¢; are spin-
independent and spin-dependent contact interactions, respect-
ively. The spin density vector is S, and s = {s*,s”,5°} are the
spin matrices. The DDIs are described by the term proportional
to Cqq, Where the effective dipole field b is defined by:

b, = /dr’ZQy,y,(r—r’)S”'(r’), (14)

With:

Op,pr —3ry1y

QV,V’(r) =3

73

5)

and v,v’ ={x,y,z}.

Equation (13) is central to the description of spinor dipolar
physics, which is the subject of section 6. In general, the DDIs
cannot be neglected when Cgyq is comparable to either ¢y or
c1. If ¢; < ¢p, then the DDIs can be significant even when
€dd < 1[94]. Furthermore, magnetisation-changing processes
effected by the term in equation (14) have no analogue in
systems with only spherically-symmetric contact interactions.
Such processes start to play a role when Cqgn >~ { p,q}.

Finally, it is useful to stress that in the MF regime, DDIs
described by equations (10) and (14) correspond to the aver-
age magnetic field produced by all atoms within the condens-
ate. This is due to the fact that correlations between atoms have
been neglected, which is the essence of the MF approximation.
In the case of spinor gases, the effect of quantum fluctu-
ations and correlations can, however, be significant, even in
the weakly interacting regime. This is due to entanglement
or squeezing naturally arising in the spin degrees of free-
dom. The consequences of DDIs on the properties and beha-
viours of gases with spin degrees of freedom will be detailed
in section 6.

14.1.3. Elementary excitations of a spin-polarised dipolar
Bose quantum gas. The elementary excitations of a BEC
are usually well described within a Bogoliubov treatment,
which matches a linearisation of the GPE around the ground-
state wavefunction [9, 87]. The theory yields a simple disper-
sion relation for a uniform 3D gas (V,; = 0):

() = \/ ke (7“‘ +znvi;l<k>).

(16)

2m 2m

This describes the energy of the elementary excitation
of momentum k in a BEC of density n. Here, Vi, (k) is
the Fourier transform of the total interaction potential. In
contact-interacting gases, Vi (k) = g. For a dBEC, Vi (k) =
g+ \Z;d(k). From the form of %(k) (see equation (8)), one
can infer that the energy of a collective excitation of a dipolar
fluid depends not only on the magnitude of its wavevector but
also on its propagation direction. The dispersion relation of
elementary excitations of an isotropic, homogeneous dipolar
fluid is anisotropic. For a dBEC, the dispersion retains the ini-
tial linear phonon character, but with an anisotropic speed of
sound c; the dispersion relation remains monotonic.

This picture is modified in a constrained geometry, where
one externally lifts the spatial symmetry along at least one
dimension by, e.g. imposing anisotropic trapping confinement
[95]. The trap along the constrained dimension yields a new
length scale. Because of the anisotropy and long-range char-
acter of the DDI, this length scale also becomes relevant to
the description of the physics of the otherwise translation-
ally invariant directions. In particular, it affects their ele-
mentary excitations. That is, a BEC that is more tightly
trapped along the dipoles’ direction than transversely pos-
sesses a favoured wavelength in its dispersion relation at which
the energy of the transverse excitations reaches a minimum
[95-99]. This is referred to as a roton minimum in analogy to
a similar minimum found in the dispersion relation of liquid
helium [100-102]. These properties of dBECs are the topic of
section 4.1.3.

1.4.1.4. Mean-field instability and collapse. At the MF level,
the mechanical stability of fluids may be understood from
analysing the dispersion relation of their excitations. An
instability occurs when the energy of an elementary excita-
tion becomes zero, since then there is no cost for populating
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such a mode. In the 3D homogeneous case, the lowest energy
modes are the long-wavelength phonons. Furthermore, due to
the DDI anisotropy, phonons propagating in the plane perpen-
dicular to the dipoles cost the least amount of energy. The
speed of sound c reaches 0 at 44 = 1 in this direction, which
identifies the threshold for mechanical collapse of a 3D homo-
geneous dipolar BEC. This is remarkable, because the instabil-
ity, arising from the attractive part of the DDI, occurs in a
gas with a finite (and positive) value of the short-range con-
tact interaction. Consequently, interactions are still present,
even if cancelling at the MF, and their BMF contribution plays
a crucial role in such a system; see sections 4.1.4 and 5.1.
This collapse, corresponding to a phonon instability, is called
‘global collapse,” [9, 92, 96, 103—106]. Generally speaking,
in an ultracold quantum Bose gas, crossing the instability
threshold leads to an implosion of the gas under the concomit-
ant effects of two-body attraction and three-body inelastic col-
lisions; these so-called Bose-Novas are well described by MF
coherent dynamics [103, 104, 107—111]. In a dipolar quantum
Bose gas, at the MF level, the anisotropy of the DDI is expec-
ted to impact the geometry of the collapse and its dynamics.

Furthermore, anisotropic external trapping modifies the
dispersion relation, yielding additional modifications of the
stability criterion as well as of the subsequent collapse. In par-
ticular, the long-range character of the DDI brings the length
scales of the trap into play. The instability may be induced
by the softening of excitation modes of a nonphononic nature
(e.g. modes of small wavelengths or with angular structures).
In these cases, the instability threshold is expected to be shifted
compared to the £4¢ = 1 uniform value. In the collapse dynam-
ics, structures at the corresponding length scale are then expec-
ted to be preferentially formed. The resultant ‘local collapse’
corresponds to a ‘modulational instability’ [95, 112—-114]. The
collapse dynamics may reveal the properties of the underlying
mode driving the instability. The different regimes of global
and local instability, and the related collapse or collapsing
dynamics of dipolar Cr, Er, and Dy dBECs, are described in
sections 4.1.4 and 5.1.

14.1.5. Quantum states stabilized by fluctuations: droplets
and supersolids.  Even if often well described by MF the-
ory, dBECs are not classical fluids. As quantum fluids, they
are liable to quantum fluctuations. Even at zero temperature,
the vacuum population of its elementary excitations, yields
interaction-induced modifications of the fluid’s energy and
ground state. The Bogoliubov treatment allows one to per-
turbatively take into account these effects [9, 87, 115, 116].
The energy corrections are, in principle, negligible for weakly
interacting gases; i.e. when na® < 1 and nags® < 1). How-
ever, the MF instability threshold described above occurs
when the MF interactions are small, changing from repuls-
ive to attractive on average. Importantly, while the overall
interaction becomes negligible, the atoms still interact in a
non-negligible way thanks to the competition of contact and
dipolar interactions. In sufficiently dipolar gases, instead of
a collapse, a remarkable phenomenon occurs at the instabil-
ity threshold. Here, BMF effects provide sufficient repulsive

interaction energy to stabilise the system. This leads to exotic
phases on the attractive side of the MF instability threshold,
including liquid-like droplet states (a quantum state that is sta-
bilised by the opposite effects of MF and BMF interactions,
and even in absence of trapping potential), droplet assemblies
(a state formed of several independent quantum droplets, self-
organised in a crystalline structure), and supersolids (a self-
organised crystalline states with global superfluid properties.
In a simplified picture, it can be viewed as a ground state
consisting of an overlapping assembly of droplets where the
droplets are allowed to maintain a common phase via particle
exchange). These recently discovered states are discussed in
sections 5.3 and 5.4.

14.2. Dipolar Fermi quantum gases.  Fermionic dipolar
atoms are also of great interest for exploring new phys-
ics. A remarkable property of dipolar Fermi gases lies in
the fact that polarised samples remain interacting even in
the ultracold regime. This is unlike nondipolar Fermi gases;
see section 1.3.1. Yet, the MF theory developed above does
not appropriately describe fermionic ensembles because the
ansatz used to write the many-body wavefunction is incom-
patible with the Pauli exclusion principle: it must be antisym-
metrized due to fermionic exchange statistics. Therefore, it is
generally not possible to neglect correlations in a Fermi gas
at low temperature, even for small interactions. This makes
a theoretical treatment of fermionic gases challenging. The
simplest treatment of MF theory that includes the antisymmet-
rization of the wavefunction replaces the product ansatz used
in section 1.4.1 for ¢ (ry,rp,r3,...,ry) by a Slater determin-
ant. This procedure is known to be sufficient for a pure state
without interactions. With interactions, it may still be suf-
ficient, but with the single-particle wave-functions modified
compared to the noninteracting case. This approach constitutes
the Hartree—Fock theory [117, 118].

The mean DDI energy for an ensemble of N atoms in a state
Y(ry,rp,rs,...,ry) is generally written as:

Edd :/d}"] ...drN1/1*(r|,r2,"37-~-7rN)

X ZVdd(ri —rj)qp(rl,rz,r3,...,rN)
6]

—1
%/drdr’/dm...dm

< (rr' ey, .. orn)Vaa(r —r' ) (r,r’ rs, .. ory).
(17

Because of antisymmetrization, the integral N(N—1) x
[drs...dryp*(r,r' rs, ... .ry) X (r,r',r3,...,ry) does not
reduce to n(r)n(r’) as in the bosonic case. Though by
using the Slater determinant ansatz, it can be simplified to

p1(r,r)pi1(r',r") — p1(r,r)pi (r',r), where

p1(r,r') =N(N—1) x /drzdr3...drN W (ryra,r3,. .., ry)

X p(r' r,rs,. . rN), (18)
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is the one-body density matrix. Therefore, the DDI MF energy
for the fermionic gas consists of two parts: the usual term, also
called the direct or Hartree term:
oo

Eff =5 [ drdr'Vatr—rntontr),(9)
and an unusual term, called the Fock or exchange term, result-
ing from the requirement for an antisymmetric wavefunction
upon particle exchange:

EJC = —% /drdr’Vdd(r—r’)pl(r',r)pl(r,r’). (20)
This exchange term is zero in the case of a BEC. Based
on equations (19) and (20), and by performing the variational
minimisation of the total energy with respect to 1, one can
derive semiclassical (Hartree—Fock) equations for the degen-
erate Fermi gas (DFG). To describe a trapped Fermi gas, one
can use a local-density approximation (LDA), which assumes
that the atoms feel a local DDI [118-123]. This particular
exchange interaction term, arising from the interplay of fer-
mionic statistics and the nonlocal DDI, has several physical
consequences—these will be the topic of section 4.2.

1.4.3. Dipolar gases in confined geometries.  As previously
discussed in section 1.4.1, BMF effects are typically weak for
BEC:s in the weakly interacting regime (far from any instabil-
ity). This is because the interaction energy is too small to cre-
ate short-wavelength correlations in the gas. One way to reach
strong correlations is to load the atoms into tight anisotropic
traps or standing waves of light (so-called optical lattice). Con-
fined trapping geometries effectively reduce the atoms’ kin-
etic energy by restricting motion. By doing so, they allow the
interaction and kinetic energies to play competing roles in the
determination of how the system organises [7, 8, 81, 124—128].
In this review, we will discuss the experimental progress based
on magnetic atoms in confined geometries; see section 7. We
note that important advances have been made with systems
of polar molecules [19, 20, 40, 129] as well as of Rydberg
atoms [21, 23, 24, 130-132]. Focusing on magnetic atoms, we
discuss three main areas: (a) the physics in low-dimensional
spaces and in particular 1D, where the motion of the particles
arise only in some directions of space and is frozen trans-
versely; (b) the physics of spinless particles whose motion
occurs, this time, along the specially confined directions in
space, and in particular, along directions of a periodic external
potential formed by an optical lattice. This realises extended
Hubbard models for spinless dipolar particles; (c) the case of
spinful dipolar particles in such periodic external potentials,
leading to quantum magnetism and XYZ models.

1.4.3.1. Dipolar gases in lower dimensions. ~ We now dis-
cuss a special case of lattice-confined geometries wherein
atoms remain free to move in one or two directions of space
while being tightly trapped (frozen) in the other(s). Such gases
effectively realise lower-dimensional systems. Quantum phys-
ics in lower dimensions is fundamentally different from that in

our usual 3D world. For instance, in both 1D and 2D, quantum
fluctuations preclude long-range order, and, in 1D, bosons can
act like fermions and vice-versa [7, 81, 124-126, 133, 134].
Exotic strongly correlated states may arise and interactions
play a crucial role.

In 1D, many aspects of quantum physics for particles
interacting via short-range potentials are understandable at
an analytic level. In particular, solvable models, such as the
Lieb-Liniger model, can often be evoked to describe such
systems [126, 135]. When such models break down, e.g. by
introduction long-range interactions, these systems can serve
as testbeds for exotic strongly correlated many-body physics
[136—138]. In the particular case of 1D dipolar gases, the DDI
lifts integrability [139], thereby introducing chaotic dynam-
ics that allows the gas to thermalize. Furthermore, control of
the dipole orientation provides a knob with which to control
the integrability-breaking mechanism and the induced therm-
alisation rates; see [140] and section 7.1.

Excited states of 1D Bose gases can possess correlations
stronger than ideal Fermi gases [141]. These so-called super-
Tonks—Girardeau (TG) states have been observed in a narrow
range of attractive contact interaction strengths in nondipolar
gases [142]. Repulsive dipolar interactions have been shown
to completely stabilise these highly excited states regardless
of contact interaction strength [143]. Dipolar stabilisation has
provided access to a quantum holonomy of the underlying
Hamiltonian that allows the gas to be topologically pumped
to higher energy states. These prethermal states realise a form
of quantum many-body scar state wherein a strongly cor-
related excited state evades thermalisation in an otherwise
chaotic system [143, 144]. This physics will be discussed in
section 7.1. Though initially explored in [140, 145], future
work could aim to provide a more general understanding of 1D
collisional physics in the presence of both the van der Waals
interaction and the DDI, especially near a FR.

14.3.2. Extended Hubbard model.  Another regime of
interest arises when the motion of the particles takes place in a
periodic external potential. This case, easily achieved by con-
fining atoms in light standing waves, has been considered for a
long time, in the ultracold community, and raised wide interest
due to its similarity to the physics of electrons gases in crystals,
and the possibility to realise very clean Hubbard models. The
introduction of DDI within such lattice systems, yield novel
physics even for spinless particles, by bringing new terms
into the standard Hubbard Hamiltonian which standardly com-
prises a contact on-site interaction and tunnelling. Due to the
DDI’s character, the new terms are anisotropic on-site and off-
site interaction terms. The new interaction terms in dipolar lat-
tices introduce competition between numerous energy scales.
This yields exotic dynamical behaviours, excitations, as well
as novel phases [13, 146]. In experiments, the relevance of the
extended Hubbard model for dipolar bosons has been demon-
strated, and the additional interactions terms quantified. The
most exotic phases predicted based on the extended Hamilto-
nian have for now remained elusive. Current achievement and
prospects are discussed in section 7.2.
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1.4.3.3. Spin physics in optical lattices. ~ Finally, we will dis-
cuss lattice systems with spin degrees of freedom. By bring-
ing into play dipolar exchange and relaxations terms—see
section 1.3.3—such systems realise models with a rich range
of exotic dynamics and phases [7, 13, 146]. In particular,
the off-site term induced by dipolar spin-exchange processes
yield generic XYZ Heisenberg models. Of particular interest,
a growth of quantum correlations is expected in such systems
under the effect of inter-site spin-exchange interactions. Lat-
tice spin models realised with magnetic atoms are discussed in
section 7.3.

14.4. Light-induced coupling of spins in magnetic atoms.
The engineering of synthetic coupling involving the particle’s
spin, such as spin-spin or spin—orbit coupling (SOC), opens
the door to the realisation of exotic states such as, on the
many-body level, topological superfluids [147—154] as well as
highly nonclassical or topological spin states [155-158], that
can even be produced at the single-atom level for large-spin
atoms. Spin-dependent light shifts or optical Raman dressing
of internal spin states may be used to effect such coupling for
the introduction of abelian (magnetic field-like) or non-abelian
(SOC-like) gauge fields [159, 160]. Unfortunately, however,
light fields also heat the atoms due to spontaneous emission,
limiting the lifetime of systems. This may be circumvented by
exploiting the level structure of magnetic atoms such as Dy
and Er, while allowing dipolar interactions to play a role in
the physics. Dipolar relaxation then sets new limits on the life-
time of these gases. Fortunately, there exist platforms in which
the rate of dipolar relaxation is significantly reduced. One
method uses a tightly confining potential in one or more spatial
dimensions to suppress relaxation via phase-space restriction;
see [161-163] and section 3.3.5. Another method employs
fermions in a large magnetic field so that dipolar relaxation
may be suppressed due to Fermi statistics; see [161, 164] and
section 3.3.4. Exploiting such possibilities has yielded the real-
isation of long-lived SOC Fermi gases [165]. Related achieve-
ments and prospects are discussed in section 6.4.1.

2. The magnetic atoms

The experimental research on dipolar quantum gases in the
degenerate regime began in Stuttgart with the first produc-
tion of a BEC made of chromium atoms in 2004 [166]. This
achievement has since then attracted great interest, both from
theorists and experimentalists. A second Cr BEC machine
soon became available at Villetaneuse [167]. The interest in
dipolar quantum degenerate gases was further sparked when
it was shown that atoms with even larger magnetic moments
than Cr, such as erbium [168] and dysprosium [169], could be
efficiently laser cooled. Soon after, Bose and Fermi degener-
ate gases of both these lanthanide (Ln) atoms were produced,
first at Urbana-Champaign (the group moved to Stanford in
2011) [170, 171], then at Innsbruck [172, 173]. DFGs of Cr
have also been produced in Villetaneuse [174]. These achieve-
ments, and the subsequent experiments, have stimulated much
theoretical interest and activity in these systems. In response

to these achievements, the field of dipolar gases made of mag-
netic atoms is now rapidly expanding. Experiments world-
wide are being constructed to explore the fascinating prop-
erties of Ln atomic gases and many additional groups have
realised gases in the ultracold [71-73, 175-183] and quantum
degenerate [74, 184—191] regimes.

In this section, we discuss the properties and the spe-
cial features of the highly magnetic atomic species currently
available in the quantum-degenerate regime, and in particu-
lar, their electronic structure and energy spectrum in compar-
ison to the alkali atoms. We first recall a few features of Cr
(section 2.1; see also [16]) before presenting the magnetic Ln
atoms (section 2.2). We describe the basic method for cooling
and trapping such species. Ultracold gases are typically cre-
ated and confined in vacuum chambers using the techniques
of Zeeman atomic beam slowers (ZSs), magneto-optical traps
(MOTs), magnetic traps (MTs) and/or optical dipole traps
(ODTs) [192]. In the case of magnetic atoms, pure MTs are
of limited efficacy due to dipolar-relaxation-induced atom loss
[85, 193, 194]; see also section 3.3. The ZS, MOT and ODT
techniques are more effective for magnetic atoms. The applic-
ation of these slowing, cooling and trapping methods must take
into account the special electronic structure of these magnetic
atoms, which we will discuss.

In addition, we discuss the interactions of light with
these atoms, specifically in regard to their large total orbital
momentum; see section 2.3. In section 2.4, we discuss short-
range scattering properties of the magnetic atoms including
their scattering length a and FRs. FRs enable the wide tunabil-
ity, in both sign and amplitude, of a. This allows one to control
the dipolar character of magnetic gases too, since such proper-
ties often depend on the relative strength of the DDI to the con-
tact interaction, eqq = aqa/a; see section 1.4.1. Moreover, FRs
enable the production of more magnetic particles via the asso-
ciation of two atoms into a molecule. We discuss the related
possibilities in both Cr and Ln atoms. We finally compare the
overall tunability of the collisional properties of Cr and Ln in
section 2.5.

2.1. Chromium

When the first ultracold-gas experiment with Cr atoms was
started by the Stuttgart group, which began in Konstanz, prior
to their move to Stuttgart, the aim was in fact to create a new
instance of DFG (due to the large abundance of its fermi-
onic isotope). They realised only later, during a visit of Rza-
zewski in 1998, that it would be a great candidate for dipolar
physics [11]. Focusing on the latter physics, using bosons,
they achieved the first BECs of 52Cr [166]. Chromium-52
atoms have a purely electronic spin of S=3 and a g-factor
of gg = 2 in the ground state (denoted ’S3 using the standard
notation 2*1L;). The DDIs between these atoms are 36 times
stronger than in the most magnetic case of alkalis because its
magnetic dipole moment is 6 g, whereas alkalis’ moments
are at most 1 up. The most abundant isotope of Cr is >>Cr;
see table 1. The atom has two other bosonic isotopes, 0Cr
and >*Cr, which have never been Bose-condensed. The fermi-
onic isotope *3Cr was cooled to degeneracy via a sympathetic
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cooling technique in 2014 [174]. Besides their dipolar char-
acter, ground state Cr atoms realise large spin systems (see
section 6.1.1) whose magnetic properties are driven by both
the DDI and their relatively strong, spin-dependent, isotropic
contact interactions. The relevant scattering lengths are ag—¢
=102.5 ap [161], as—4 — 56 ap, ds=>2 =-7 ap [195], as—o —
13.5 ay [196]; see section 2.4 for details.

Laser cooling of Cr was pioneered by McClelland for
the purpose of creating collimated atomic beams for atom
lithography [197]. A motivation for this work was based on
the fact that the Cr ion is a colour centre in various host
materials; e.g. it gives the red colour to a ruby crystal. This,
controlling and positioning individual single colour centres
could be possible through the three-dimensional laser cool-
ing of Cr. Additionally, Cr sticks to most surfaces, and as
such, Cr serves as an excellent material for etch masks:
using transversely cooled Cr atomic beams, one and two-
dimensional structures at a resolution of a few tens of nano-
meters, as well as three-dimensional structured doping, were
demonstrated [198].

In the relatively high-density regime relevant for laser cool-
ing, a large light-assisted inelastic cross-section was observed
[199, 200] close to the Langevin limit [201]. This loss mech-
anism creates an intrinsic limitation to the density and num-
ber of atoms that can be efficiently captured in a Cr MOT.
However, as the cooling transition ’S; —Py is not perfectly
closed, metastable states (5D3,4) are populated during the cool-
ing process and are trapped in the quadrupole field of the MOT
due to their large magnetic dipole moment. This provides
continuous loading into a dark, but trappable, state that is
immune to light-assisted collisions. Typically a few 10® atoms
accumulate in this trap, with their number limited in density
by inelastic collisions between these metastable atoms [202].
Using a repumper on the intercombination line D3 4 —7Ps 4
produces a magnetically trapped sample in the ’S; ground
state [203]. The sample is sufficiently dense that evaporative
cooling may proceed. However, such cooling is then limited
by dipolar relaxation collisions, flipping spins into untrapped
states and inducing heating from the released Zeeman energy
[85, 161]. This may be avoided by loading into a crossed
ODT an evaporatively precooled and spin-polarised sample,
i.e. one in the strong-field seeking, lowest-energy Zeeman
state. The gas could then be evaporatively cooled all the way
to degeneracy [166]. Subsequent production schemes of Cr
degenerate gases start by accumulating atoms in the meta-
stable D3 4 and S, states directly from the MOT into an
ODT. The atoms were then repumped to the ground state
where all-optical evaporative cooling in the ODT produced the
BEC [167]. Additional details regarding the key techniques
and strategies to produce Cr BECs are described in an earlier
review [16].

In contrast to the Lns, the ground state in Cr is an ‘S-state,’
which means that the mutual van der Waals interactions are
isotropic. However, there are still sufficient Zeeman sub-
states to provide a rich structure in the asymptotic molecu-
lar states. The DDI additionally provides a coupling between
these states. Therefore, even without hyperfine structure, as

it is the case for bosonic Cr (/ =0), a number of narrow
FRs exist, as were first found and characterised in [195]. See
section 2.4 for details.

2.2. Lanthanides

Atoms with multiple valence electrons and non-S electronic
ground state, such as the magnetic Lns, are of increasing
interest to the study of strongly dipolar phenomena in atomic
quantum gases. Among the magnetic Lns, Dy [170, 171] was
the first to be brought to quantum degeneracy, shortly followed
by Er [172, 173]; see section 2.2.2.2. We note that Yb has been
the first Ln to be Bose-condensed [204], but because of its
closed-shell character, Yb has zero magnetic moment and is
more similar to the alkaline earth atoms—it will not be dis-
cussed here. In addition, BECs of Tm were recently achieved
[74]. We will now mostly focus on Dy and Er because they
are the most widely employed for the quantum gas research
reviewed here.

As summarised in table 1, Er and Dy have a number of
special features that make them particularly appealing for
quantum-gas experiments. Both Er and Dy possess many nat-
urally abundant isotopes with a wide variability of properties,
including several bosonic and fermionic isotopes. Besides dif-
ferent quantum statistics (bosonic or fermionic), the isotope
variety also offers a useful diversity and tunability of scatter-
ing properties: Each isotope has a different background value
of a and a distinct Feshbach spectrum, the latter of which
can be used to further tune a; see section 2.4. Besides bin-
ary collisions, the rates of multibody collisional processes
are also expected to change from one isotope to the other.
This includes, in particular, the three-body inelastic collisions,
which typically induce detrimental losses and heating in cold
gases. The wide variability in collisional properties offers
more opportunities for finding isotopes that can be efficiently
cooled to quantum degeneracy. We note that this isotope vari-
ety is special to Er and Dy among the magnetic Lns: Eu, Tm
and Ho all have only one stable (bosonic) isotope. This was
one of the reasons for first focusing on Er and Dy within the
Ln series.

Magnetic Lns have a large magnetic dipole moment in the
electronic ground state (e.g. 7 ug for Er and 10 ug for both Dy
and Tb), and, because their mass appears in the DDI strength,
the corresponding dipolar lengths are several times larger than
Cr’s (agg = 15ag), with agg = 65.5a¢ and agg = 131ag in Er
and Dy, respectively. In dipolar BECs (dBECs), the strength
of the dipolar character of a quantum gas is proportional to the
ratio £q4q4 = aqa/a; see section 1.4.1. Magnetic Lns are suffi-
ciently dipolar that their €44 are typically of the order of 1 at
background level (i.e. away from FRs).

In addition to their strong dipolar character, magnetic Lns
feature a large orbital momentum quantum number, L, in
their ground state (L =35 for Er and L =6 for Dy). This is a
major difference from Cr, where the large angular momentum
arises purely from the electronic spin S while L=0. The
large L value in the Ln case induces an orbital anisotropy,
which causes the van der Waals interactions to be anisotropic,
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Figure 1. Energy spectrum of Er and Dy. The levels shown in red (black) have an even (odd) parity. Electric dipole transitions couple the
ground state, which has an even parity, to energy levels of odd parity and with a total angular momentum within the interval J = [5,7] for Er
and J = [7,9] for Dy. Both species feature broad transitions in the blue (401 nm for Er and 421 nm for Dy), intercombination lines at 583 nm
for Er and 626 nm, and narrow cooling transitions at 631 nm and 841 nm for Er and 741 nm for Dy. These transitions have been used in

experiments to laser cool the atomic samples.

in addition to the DDI [205-207]. As we will discuss in
section 2.4, this orbital anisotropy has important consequences
for the scattering properties of Lns [194, 205, 206, 208, 209],
in particular for interspin interactions, as well as for their
atomic polarizability [176, 210-215]; see sections 2.3, 2.4
and 6.1.3.

In addition, and similar to Cr, magnetic Lns realise large-
spin systems; see section 6.1.1. Finally, the large masses lead
to low recoil energies, which is beneficial for optical trapping
and laser cooling.

2.2.1. Atomic energy spectrum of magnetic Lns.  The elec-
tronic configuration of magnetic Lns is [Xe]4 f"6s%. It is char-
acterised by a xenon-like core, an inner open 4f shell with
m valence electrons, and an outer closed 6 s shell. Due to the
electron vacancies in the inner shell, magnetic Ln are often
called submerged-shell atoms. The unfilled 4 f shell plays a
particularly important role in their high magnetism and orbital
anisotropy.

Figure 1 shows the atomic energy spectra for the cases of
Er and Dy, up to a wavenumber of 25000 cm™~'. Both spe-
cies have an even-parity ground state with a large J and many
excited states of odd and even parity of various quantum num-
bers. A comprehensive set of spectroscopic data of all Ln ele-
ments can be found in references [216-218]. Note that theory
results that are based on the Cowan suite of codes [219, 220]
and used to estimate the polarizability of Lns predict atomic
transitions that have not yet been observed [212, 213]; see also
section 2.3. This reveals the still incomplete knowledge of Ln
atomic spectra and their properties.

Unusually for those accustomed to alkali atoms, many of
the energy levels in the electronic spectrum of Ln atoms do not
conform to the usual LS-coupling scheme. In the LS scheme,

the total electron spin S and angular orbital momentum L
couple to form J = L + S, but the large SOC of the electrons in
Lns renders this scheme sub-optimal for some of the electronic
levels. In this case, a J|J,-coupling scheme is more appropriate
[221]. In this J;J, scheme, the electrons in each shell couple
independently in a LS-coupling scheme, and then the total
angular momentum quantum numbers from the different shells
sum together. For instance, 4 f electrons give rise to J; and the
6 s ones to J;, and J = J; + J» with quantum number J, which
is denoted as (J;,J>),. For Lns, the LS scheme remains relev-
ant for the ground state while the excited states (where SOC
is stronger) typically follow a J;J,-coupling scheme. Finally,
the bosonic isotopes of Dy and Er have nuclei with an even
number of protons and neutrons. This results in a zero nuclear
spin I and no hyperfine structure. In contrast, the fermionic
isotopes have an even number of protons and an odd number
of neutrons, resulting in a nuclear spin I=5/2 and I="7/2
for Dy and Er, respectively. We note that other magnetic Lns,
such as Tm, Eu or Ho, have only bosonic isotopes and those
isotopes have a hyperfine structure.

Lanthanides’ atomic spectra offer a rich collection of
J — J+ 1 optical lines, including broad-, narrow- and ultra-
narrow-linewidth transitions. Many of such transitions can be
used for optical manipulation and laser cooling, and they are
readily accessible with common lasers. As a rule of thumb,
the linewidth of the transitions is larger for short-wavelength
(i.e. high energy) transitions. The strongest line in Er (Dy)
at 401 (421) nm, the intercombination line at 583 (626) nm,
and the narrow line at 841 (741) nm are used in experiments
for laser cooling, as discussed in the next section. The nar-
rower resonances have also been used for spin manipulation or
coupling, see section 6. Furthermore, the spectra of the J — J
and J — J — 1 transitions are equally rich and relevant for
optical manipulation schemes [222]. Among the rich spectra of
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Lhns, an interest is also growing for the ultranarrow resonances
of Hz-level linewidth, see e.g. [223-226]. Finally, the orbital
anisotropy of Lns also yields a dependence of the matter-light
interaction on the atomic spin. This presents both challenges
(how to obtain equal trapping of all spin states?) and advant-
ages (realisation of spin-dependent potentials, SOC, etc) for
ultracold gas experiments; see also latter discussions.

2.2.2. Optical cooling, trapping, and evaporative cooling of
open-shell Ln.  Trapping and cooling of open-shell Ln atoms
have been achieved using ZSs, MOTs, and ODTs, but without
the use of magnetic trapping. The overall efficiency is similar
to that of alkali-metals [192], though there are some key dif-
ferences that we now describe.

2.2.2.1. Optical cooling and MOTs.  The broadest laser cool-
ing cycling transitions of Lns are open, meaning that there are
a multitude of metastable states to which the excited state can
decay through spontaneous emission. Repumping the popu-
lation back to the cooling transition is not practically feasible.
Fortunately, two solutions exist: a repumperless MOT on these
broad transitions and a MOT using a closed transition with
small or intermediate linewidth. We detail below the working
principle of these two schemes.

e Broad-line MOTs

In 2006, McClelland et al presented a repumperless Er MOT
[168,217]. Despite the open nature of the ~30 MHz linewidth,
401 nm transition, neither the MOT nor the ZS required a
repumper, and 10° atoms were confined. Subsequently, trans-
verse cooling [169, 227, 228] and a MOT [169, 229] contain-
ing several 10® atoms were reported for Dy, both using a sim-
ilarly wide transition at 421 nm. Likewise, MOTs of Ho [72],
Tm [71, 230, 231] and Eu [73] have been formed. The sur-
prising success of the repumperless MOT derives from two
key properties of magnetic Lns atoms: (a) They possess a sur-
prisingly small branching ratio (<107>) of decay to the meta-
stable states; and (b) the lifetime of these metastable states
in the quadruple MT of the MOT is long. The former prop-
erty allows a sufficient number of atoms to go through the
ZS without decaying to metastable states. The latter property
means that atoms in metastable states are not lost, but remain
trapped in the MT of the MOT (due to the atoms’ large mag-
netic moment) until they eventually decay to the ground state
and undergo cooling cycles again.

An unusual, anisotropic sub-Doppler cooling effect
was observed inside these Er, Dy, and Tm MOTs
[169, 229, 232-234]. The effect is a consequence of the fact
that the Landé g factors of the ground and excited states are
nearly the same, yielding nearly zero differential Zeeman shift
on the cooling transition. This allows o™ ¢~ polarization-
gradient cooling [192, 235] to exist even in a large mag-
netic field. The atoms are therefore exposed to both Dop-
pler and sub-Doppler cooling mechanisms inside the MOT.
The larger-population Dy blue-line MOTs exhibit a small
core of sub-Doppler cooled atoms, as in the Er MOT, but

this core is surrounded by a larger-population shell of hot-
ter, Doppler-cooled atoms. Atoms beyond a certain distance
from the MOT’s quadrupole MT centre feel a large-enough
magnetic field to disrupt the sub-Doppler cooling mechanism
beyond this radius. The temperature of this core of colder,
sub-Doppler cooled atoms is highly anisotropic, with the tem-
perature of atoms along the quadrupole MT axis hotter than
those in the quadrupole plane of symmetry, or vice versa
depending on the ratio of cooling laser intensity along these
directions [233]. This unusual anisotropic sub-Doppler cool-
ing effect is likely due to the countervailing tendency of atomic
polarisation to lock its orientation to a direction favoured by
the laser optical pumping versus its tendency, due to the large
magnetic dipole moment of Dy, to align according to the local
magnetic field of the MT [233].

e Multi-stage MOTs

While ZSs and MOTs on broad transitions can perform the
initial stages of laser cooling and trapping of open-shell Lns,
they cannot cool the atoms low enough to load ODTs. Further
cooling may be provided by using so-called intercombination-
line MOTs. These are formed using laser cooling lines on elec-
tric dipole semi-allowed (intercombination) transitions. Fortu-
nately, all of these narrow transitions are closed, obviating the
need for repumping lasers.

In one of the realised schemes, the atoms are cooled
using, first, a broad-line MOT, and then, in a second stage, a
colocated MOT on a very narrow transition <10 kHz. A sim-
ilar scheme was also used for cooling strontium atoms [236].
The first narrow-line open-shell Ln MOT was demonstrated in
[237] with Er, using such a scheme on the 8§ kHz wide, 841 nm
transition. This very narrow line, however, leads to an unusual
requirement for stable MOT operation: the cooling lasers must
be tuned to the blue (i.e. positive frequency detuning) side of
the transition, rather than the red. This is because Er’s large
magnetic moment causes the magnetic Zeeman force to dom-
inate the optical radiation forces, even in the small magnetic
fields encountered near the MT centre. Blue detuning also
optically pumps the atoms to the magnetically trappable weak-
field-seeking states. Under conditions of blue detuning, the
MOT forms below the quadrupole MT where gravitational,
radiation, and magnetic Zeeman forces mutually balance. The
8 kHz wide, 841 nm Er MOT provided ~2 K gases [237]. A
similar blue-detuned MOT for Dy on its 1.8 kHz wide, 741 nm
transition was able to cool 107 Dy atoms loaded from the broad
MOT to ~2 pK [170, 238] and works for all high-abundance
isotopes of Dy. More recently, a 841 nm Er MOT operating
with red-detuning have been demonstrated [191]. This was
made possible by its loading from an intermediate-linewidth
MOT operating from the 583 nm transition, as in [239]; see
below. This additional cooling stage enabled temperatures as
low as 400nK to be reached and phase-space densities as high
as 0.05.

o Single-stage intermediate-linewidth MOT's
An alternative approach replaces the double-MOT scheme
with a single MOT whose transition linewidth is intermediate,
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i.e. in the 100s of kHz range. This is similar to the scheme
employed for ytterbium atoms [240]. The narrow linewidth
provides Doppler-limited cooling below 10s of pK, suffi-
ciently low to directly load an ODT, yet is broad enough to
allow the capture of atoms from a Zeeman-slowed atomic
beam. This intermediate-linewidth scheme was first developed
for an open-shell Ln MOT in [239] using Er. This scheme
has then become the most widely employed, and MOTs of all
high-abundance Er [177, 182, 239] and Dy [175, 177, 183,
186, 188, 191, 241, 242] isotopes, both fermionic and bosonic,
have been created in various labs. Double-species MOTs of
Er and Dy have also been achieved using this scheme [177].
It has recently been employed in Tm [178, 179]. Typically,
MOTs containing several 107-10° atoms with final temper-
atures of ~6-13 pK are achieved. These low temperatures
allow direct loading of the atoms into relatively low-power
ODTs. The intermediate-line MOT can also load narrow-line
MOTs operated with red detuning, which enables rapid cool-
ing to lower temperatures before loading an ODT [191]. While
intermediate-line MOTs have been successfully loaded dir-
ectly from Zeeman-slowed atomic beams [175, 177, 177, 186,
188, 191, 239, 241, 242], recent schemes have enhanced the
capture efficiency of the narrow-line MOT by using angled
Zeeman slower beams on the broad 421 nm transition in
between the output of the ZS and the position of the MOT
[182, 183]. This provides a factor 20 gain in population in the
final MOT.

The intercombination lines in Er, Dy and Tm are at
wavelengths of 583, 626 and 530.7 nm with linewidths of 190,
136, and 320 kHz, respectively. These MOTs are operated at
very large red detunings, intensities, and magnetic gradients
[175, 177,185, 188,239, 241]. In this configuration, the atoms
feel a radiative force only over a portion of the trap volume.
The force is negligible at the centre, while the magnetic gradi-
ent brings the atoms back into resonance on an ellipsoidal
shell whose radius is set by the competition of light detun-
ing and Zeeman energy shift [243]. This yields a MOT cap-
ture volume that increases with the light detuning. Similar to
the MOTs achieved on extremely narrow transition described
above, the atoms are displaced below the trap centre and are
in an unconventional bowl-shape due to gravitational effects.
This enabled a single-beam narrow-line MOT in Er [237] due
to magnetic trapping. A more practical scheme using only five
MOT beams was demonstrated [177, 191], where the sixth
beam coming from the top was unnecessary due to the MOT
located below the zero of the magnetic field. Conveniently, in
the intermediate-line MOTs, the atoms are spin-polarised into
the lowest Zeeman sublevel, rather than the highest, as is the
case for the blue-detuned narrow-line MOTs [170, 237]. The
latter require an RF adiabatic rapid fast passage step to transfer
atoms from the weakest to the strongest field-seeking states.
Dreon et al [175] and Cojocaru et al [178] additionally demon-
strate that light-assisted collisions are the limiting factor to
the performance of the intermediate-line MOT scheme for the
bosonic isotopes. Such losses are minimised at large detuning.
In all schemes, the fermionic MOT's have the lowest trap pop-
ulations relative to natural abundance. This is thought to arise

from complications due to inefficient optical pumping and loss
channels arising from the existence of hyperfine structure in
the fermionic isotopes [169, 229, 241, 244].

2.2.2.2. Optical dipole trapping and cooling to quantum
degeneracy.  Despite the complex electronic structure of
open-shell Lns, optical dipole trapping is in practice very
similar to that of alkali-metal atoms; see [245]. Long-lived
optically trapped quantum gases of Lns have been made at a
variety of wavelengths. These in include: 1560, 1070, 1064,
741, and 532 nm for Dy [170, 171, 214, 246, 247]; 1570,
1070, 1064, and 532 nm for Er [172, 173, 215]; and 532 nm
for Tm [74, 179, 231]. A quasielectrostatic ODT of Er near
10.6 pm has also been reported [185]. We will review the spe-
cial features of optical trapping with Ln in section 2.3. In the
remainder of the present section, we will describe how the res-
ulting conservative traps have been used to achieve quantum
degenerate gases of both Dy and Er via standard evaporative
cooling.

e BECs

Forced evaporative cooling in a crossed ODT—overlapping
ODTs that create a ‘dimple’ trap at their intersection—is
quite efficient for open-shell Ln due to the contributions to
the elastic cross-section provided by dipolar collisions; see
section 3.2. However, compared to the ODT evaporation of
weakly dipolar species, care must be taken to ensure that the
dipolar gas does not become mechanically unstable and col-
lapse during the evaporation process; see section 5.

The first degenerate gas of an open-shell Ln was created
in 2011 [170]: Nearly pure BECs of '**Dy were observed
with a population of ~10* atoms at a density of 10'* cm™3.
Soon thereafter, BECs of '®Er were made, with 2 x 10° atoms
[172, 244]. BECs of other isotopes of Dy, specifically '®2Dy
with 10° atoms and '°Dy with 10° atoms [248] and !®°Er
with 10° atoms [249] were produced; see section 2.5 and
table 1 for a summary. More recently, various quantum degen-
erate mixtures of Er and Dy with typically few 10* atoms
in each component [187] were also achieved using the iso-
topes '®Er, '®Er and '"°Er (which was previously uncon-
densed), and '®?Dy and '**Dy. In 2020, the first BEC of Tm
was achieved [74].

The evaporation efficiency of Lns greatly depend on the
choice of bias magnetic field applied B. This is due to
the complex scattering behaviour of the Lns tuned by the
extremely dense spectra of FRs; see sections 2.4.2 and 2.5.
Both two-body (elastic) and three-body (inelastic) scattering
rates strongly depend on B. We note that, up to now, efficient
evaporative cooling has been reported only at relatively low B,
from a few hundreds of mG to a few tens of G. Moreover, the
orientation of the bias field can also play a role in determining
the efficiency of evaporative cooling, in particular because it
impacts the stability of the interacting system. To reduce the
contribution of the attractive DDI, ODTs are typically cigar- or
pancake-shaped during evaporation; see also section 4.1.4. We
note that a particularly efficient evaporation scheme consists in
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changing the trap geometry towards more pancake shapes in
the final stage of the scheme [187, 244, 249, 250].

¢ DFGs

The first degenerate dipolar Fermi gas was created using a
sympathetic cooling scheme. Fermionic '*! Dy was co-trapped
with bosonic '%*Dy to provide sympathetic cooling using this
dipolar mixture [171]. The resulting deeply degenerate '6' Dy
quantum gas had a population of 10* atoms at T/Tr = 0.2
[171]. As section 3.2 describes in more detail, the direct evap-
orative cooling of a spin-polarised gas of magnetic fermions
is also possible thanks to long-range universal elastic dipolar
scattering. In [171], such a direct evaporative cooling was also
performed, yielding an assembly of a few thousand '6'Dy
atoms cooled down to T/Tr = 0.7. The first deeply degen-
erate DFG of Er used this direct approach to reach degen-
eracy with a spin-polarised gas of '®’Er of ~7 x 10* atoms
at T/Tr < 0.2 and densities exceeding 4 x 10'* cm—3 [173].
This work confirmed the efficacy of this cooling mechan-
ism arising from universal elastic dipolar scattering. Simil-
arly large dipolar DFGs of '®'Dy were created through the
optimisation of the crossed ODT shape—i.e. a tighter trap
should be used to evaporatively cool fermions—and evapor-
ation procedure [251]. This direct-evaporation scheme is very
attractive, as it involves a far simpler experimental procedure
than sympathetic cooling. Moreover, the evaporative cooling
efficiency was found to be as high as that of bosonic isotopes.
More recently, quantum degenerate mixtures of the fermionic
161Dy isotope with bosonic '®8Er [187] as well as with fer-
mionic “°K [188] were produced, combining direct evaporat-
ive cooling and sympathetic cooling. Note that '’Er DFGs
could not be achieved in a 1064 nm ODT and a distinct setup
must be implemented that uses a 1570 nm crossed-ODT. The
167Br is rapidly lost from 1064 nm ODTs perhaps because
of light-induced collisions related to the isotope’s hyperfine
structure adding complexity to its electronic spectrum [173].
Finally, we highlight that the B value plays a similarly import-
ant role in setting the evaporative cooling efficacy fermionic
open-shell Lns as well. Indeed, for such polarised fermions, a
large number of FRs also exist, with a far greater density than
even for bosons due to the fermions’ hyperfine structure; see
also section 2.4.2.

2.3. Atom-light interactions in magnetic atoms

Atom-light interactions are at the heart of cold-atom exper-
iments. They provide exquisite control and diagnostic tools,
and all the observations discussed in this review rely on them.
Indeed, these interactions enable, e.g. atomic cooling (see
e.g. section 2.2.2.1), imaging of density distributions, trap-
ping with conservative potentials (see e.g. section 2.2.2.2),
controlling internal atomic degrees-of-freedom (i.e. their spin)
(see e.g. sections 6 and 7.3), and coupling of this spin to
their external motion (see e.g. section 6.4.1). The interaction
between atoms and light is generally described by the Hamilto-
nian term [252]:

VaL =D.E. (1)

The electric-dipole approximation has been applied in
deriving this expression and is justified by the fact that the light
wavelength is much larger than the size of the atom. Here, Dis
the atomic electric dipole operator, whose origin arises from
the displacement operators of the electrons times the electric
charge —e, and E is the electric field operator that accounts
for all possible photon modes with wavevector k and polar-
isation s. The operator D of an atom is determined by its elec-
tronic ground state and electronic excited state spectrum. Mag-
netic atoms, whose electronic structure has been shown to be
remarkable, are expected to present unusual light-matter inter-
action properties compared to alkali atoms. In this section, we
will partly review these particularities, focusing on the aspects
most relevant for the manipulation of quantum gases, i.e. under
the typical condition of a coherent laser field sufficiently far
detuned from electronic excited states.

2.3.1. Atomic polarisability tensor.  In presence of a (mono-
chromatic) laser field, a semiclassical approximation may be
used for E: E = E(F,1) = & (F) (éexp(—iwot + ¢o(F)) +c.c.)
with &, wo, ¢o and € the amplitude, frequency, phase and
polarisation unit vector of the laser field. Within the semi-
classical approximation, the atomic dipole operator is non-
zero thanks to the charges’ displacement induced by the elec-
tric field. This results in the simplified form:

D(r,t) = a(wo) E(F,1), (22)
here « is the complex dynamical atomic polarisability at fre-
quency wy. Itis a sum of all electronic transition contributions,
which typically scale linearly with the transition linewidth
(setting the electronic transition strength) and vary inversely
to the detuning of wy to the transition frequency [245, 252].
The real part of « relates to the (reactive) dipole force while
its imaginary part relates to the (dissipative) radiation pres-
sure force and to the photon-scattering rate. Practically, the
former determines the AC Stark shifts induced by the light on
the atomic levels’ energies and, thus, to the induced dipole trap
depth. The latter limits the trap lifetime.

Because of the internal structure of the atoms, the atom-
light coupling depends on the total angular momentum of the
electronic state F and on the light polarisation . This yields a
(rank-2) tensor structure for the polarisability «. It is again a
sum over all electronic transitions, but now accounting for the
various electric dipole transition elements between the ground
and excited states’ sublevels as well as their possible spatial
anisotropy. The polarisability tensor o can be decomposed
into a scalar «, vector «,, and tensor «; contribution such that
[220, 253, 254]:

alwy) = as(wo)i + o, (wo %
3(e.F)(€*.F) +3(e*.F)(e.F) — 2F?
+ (o) 2FQ2F — 1)

(23)
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The scalar part is independent of the angular momentum
operator, while the higher-rank contributions yield spin-
dependent terms. In this respect, vector and tensor polaris-
abilities set the strength of Raman coupling between atomic
Zeeman sublevels. They also provide tools for optical spin
manipulation and spin-dependent trapping. Their contri-
bution’s dependence on the light polarisation additionally
induces an anisotropy of the atom-light coupling, varying with
the relative angle between the quantisation axis (set by the
magnetic field) and the light-beam polarisation vector.

2.3.2. Tensor polarisability in magnetic atoms. A major
difference in the atom-light interactions involving magnetic
atoms versus, e.g. alkali atoms, lies in their large vectorial
and tensorial polarisabilities. This arises from the large elec-
tronic spin of the magnetic atoms, which yields strong SOC in
electronic states with L # 0, both in ground and excited states.
This strong SOC results in differences between the electric
dipole matrix elements coupling between the different fine-
structure levels of the ground and the electronically excited
states, which ultimately leads to spin-dependent and aniso-
tropic behaviour of the atom-light coupling. In the Cr case, the
anisotropy comes from SOC in the excited states [255-257],
while in the Ln case, it arises from the combined effect of
SOC in both the ground and excited states [176,211-215, 247,
258]. The existence of fine structure in both the excited and the
ground state electronic configurations of Lns—and the large
energy splitting within these fine structure manifolds—results
in a different scaling of the vector and tensor polarisabilities
versus that of the alkalies [157, 259]. That is, both the vec-
tor and tensor polarisabilities scale as o A;l, while in alkali
metals the scaling is oc A2 for all detunings A, greater than
the hyperfine splitting, where A, is the (average) detuning of
the light from the excited states.

The large vector and tensor polarisabilities of magnetic
atoms have been investigated via different means. In Cr, spin-
dependent optical trapping was indirectly revealed in the study
of many-body spinor dynamics, both in bulk [257] and in
lattices [260]. Spin-dependent quadratic light shifts, resulting
from the tensor polarizability close to the 427.6 nm-transition
(laser at 427.85 nm), were also used to produce controllable
spin mixtures [256].

A detailed experimental investigation of the characterist-
ics of atom-light coupling in Lns using the newly available
ultracold samples was crucial for a proper understanding of
these systems. Indeed, up to now, theoretical predictions for
Ln atom-light interactions have been difficult and remain
incomplete. This is due to the complexity of the many-body
electronic structure of the atoms and the limited knowledge
available. Much progress has recently been made in devel-
oping sophisticated numerical tools to analyse the electronic
level structure of Dy [211, 213], Er [212], Ho [258], and Tm
[261], see also section 2.2.1. Recent measurements of Er, Dy,
and Tm dynamic (total, scalar) polarisabilities based on trap
frequencies measurements have resulted in close agreement
between this theory and the experiments [176, 215, 261, 262].
In addition, thanks to a direct comparison with an alkali atom

with a precisely known polarizability (potassium), unpreced-
ented accuracy and precision on the Dy polarizability have
been obtained in experiment, allowing theory test [176].

The unusually large vector and tensor polarisabilities of
Lns (as compared to alkali atoms like Rb) have also been
experimentally investigated. The large vector and tensor polar-
isability of Dy was first studied using a laser field close to
the 741 nm transition [214]. Near this transition, a so-called
‘tune-out’ wavelength was found, at which the total light shift
vanishes. Kao et al observed a strong dependence of the tune-
out wavelength on the light polarisation angle, which is a
consequence of the large tensor polarisability of Dy. This
introduces a novel experimental knob with which to tune the
wavelength where the AC polarisability vanishes. Becher er al
[215] probed the large tensor part of the polarisability of Er
ground-state, by testing the dependence of the optical trap’s
frequencies (thus its depth) on the light’s polarisation axis.
A sizeable anisotropy effect (few percent) was observed at
conventional wavelengths (1570 nm, 1064 nm, and 532 nm)
far away from atomic transitions. The spin-dependent light
shifts were later used to rapidly control the spin dynamics in
an assembly of lattice-confined fermionic Er [263], see also
section 7.2. A similar scheme employing the ellipticity of light
polarisation was applied to gases of Tm atoms and enabled the
measurement of both the tensor and vector parts of its ground-
state polarisability at 532 nm [262].

The locations of other special wavelengths at which the
ground and excited state polarizibilities match have been
predicted in Dy [211]. These so-called ‘magic’ wavelengths
are of great utility to research involving atomic clocks and
optical lattices for quantum simulation [264]. By making use
of Dy’s large tensor polarisability at the conventional trap-
ping wavelength of 1070 nm, the authors [247] developed
an analogous ‘magic polarisation’ scheme wherein the AC
Stark shifts of the ground and excited states of a transition
(here at 626 nm) are tuned to be identical. The authors then
apply their findings to develop a Doppler cooling scheme on a
trapped sample with improved efficiency. Large tensor light
shifts close to the 626 nm transition of Dy were also used
to generate effective spin-coupling terms [180, 181]; see also
section 6.4.2. Other important consequences of these large
vector and tensor polarisabilities in Lns relate to increasing
the strength of Raman coupling schemes and to the possibility
of efficient SOC; see section 6.4.1.

The unconventional features of atom-light coupling in these
magnetic atoms come into play in various ways in this review;
see in particular sections 6 and 7.2. Experiments have only
begun to explore the possibilities that are offered by the mag-
netic atoms’ electronic structure for the purpose of manipulat-
ing the properties of dipolar quantum gases.

2.4. Feshbach resonances in magnetic atoms

Collisions in ultracold dilute gases are known to be well
described within two-body scattering theory [10, 78, 265].
When the interparticle interaction potential is short ranged, as
is the case for the van der Waals force, the scattering at ultra-
low temperatures is characterised by a single parameter, the
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scattering length a [266]. In brief, a describes the phase shift §
between the incoming and outgoing waves describing the rel-
ative motion of two atoms colliding under the influence of the
total interparticle interaction V(r) at vanishing energy, where
r is the atomic separation; see section 3.1 for details. This
simple picture is modified when accounting for the internal
spin degree of freedom of colliding atoms. This can cause a
to be spin-dependant. Moreover, magnetic fields can shift the
relative energy of different spin collisional channels. In the
presence of coupling between different channels, this induces
resonant collisions at particular field values. These are called
Fano-Feshbach resonances—Feshbach resonances (FRs) for
short—and we now review their key properties and primary
applications. We will then provide details particular to the case
of magnetic atoms. See [7, 10, 267, 268] for more information.

A collisional channel is defined by a set of bare internal
states of the two free atoms associated with a given partial
wave component of their relative motion. These partial waves
are represented as spherical harmonics with quantum num-
bers ¢ and my for the norm orbital angular momentum and
its projection, respectively; see section 3.1 for details. Each
collisional channel corresponds, by projection of V(r), to a
distinct molecular (scattering) potential Ve, (r). In the context
of FRs, the different channels can be coupled by off-diagonal
terms of the potential at finite r. In addition, the asymptotic
values of Ve, (r — 00), so-called dissociation thresholds, may
be tuned relative to one another, e.g. via the Zeeman effect if
the two channels have different magnetic moments. Note that
for bosons (fermions) in the same spin states, only channels
with even (odd) values of £ are allowed.

Two atoms collide in the entrance channel, defined by
the internal states in which they are prepared, and typic-
ally /=0 [269]. The initial state of the pair, also called
scattering state, lies in the continuum of the associated scatter-
ing potential, with a small (kinetic) energy E above the dissoci-
ation threshold E,. The entrance channel is thus an open chan-
nel for the collision, as the atoms can be infinitely far away
in this channel. A FR in the collision of the two atoms occurs
when a bound state of a different (closed) channel couples to
the entrance channel. The closed channel has an energy E
that can be tuned around E [270, 271]. This second channel
is closed because its dissociation threshold is higher than E
and the atoms cannot reemerge from the collision in this chan-
nel;i.e. |[r| = co. The coupling term between the two channels
induces a mixing of the scattering and bound states, and the
atoms, during their approach, can be temporarily captured in
a quasi-bound state. This behaviour resonantly alters the scat-
tering properties of the pair, resulting in a change in a.

The FRs are a particularly convenient tool in ultracold
atomic systems for changing the scattering length thanks to
the ease with which one may tune the relative energy of the
channels E; — E,, in particular using magnetic fields. These
magnetic FR allow a to effectively vary with the magnetic field
B around the resonance centre By as:

) )

B A
B — By

a(B) = apg <1 24)

where apg is the background value away from any res-
onance. That is, ap, is the scattering length of the single
open channel. A is the resonance width and relates to
strength of the coupling between the bound and scattering
states [272].

We note that, besides magnetic FRs, optically induced FRs
are also possible. These utilise an open channel involving the
electronically excited state. Optical control of FRs opens new
prospects beyond magnetic tuning, as it allows for ultrafast
and local control of the interparticle interactions. This idea
has been theoretically proposed [273, 274] and experimentally
realised in alkali [275-277], alkali-earth [278, 279] and non-
magnetic Ln atoms [280, 281]. It has not yet been applied to
magnetic atoms. Yet, the rich atomic spectra of magnetic Lns
(see e.g. section 2.3) make optical FRs promising candidates
for controlling a while minimising heating and atom loss asso-
ciated with photo-association and light-induced inelastic colli-
sions; see e.g. [282]. Finally, we note that magnetic FRs could
also be controlled optically, using state-dependent light shifts.
Such a tuning was demonstrated with alkali atoms [283-288].
This technique may also bear fruit in magnetic atomic sys-
tems thanks to the large spin-dependence of their light
coupling.

In addition to a tuning, the FR provides access to a weakly-
bound dimer (i.e. molecule) state. This is the closed-channel
bound state dressed by the open-channel scattering state. Close
to the resonance, the dimer becomes extremely weakly bound
and its binding energy and size conform to universal scal-
ing laws, which are solely dictated by a and are insensit-
ive to short-range details. It is called a halo dimer because
of its large spatial extent. This weakly-bound dimer state
can be populated through a dynamical tuning of Ey — E,
via, e.g. a ramp of the B-field. This leads to the formation
of so-called Feshbach molecules [268, 289-291]. We note
that such molecules can be further transferred to a more
deeply bound state via coherent optical adiabatic transfer
schemes [292].

In the case of alkali-metal atoms in their absolute ground
state, the coupling between the channels involved in magnetic
FRs is of hyperfine origin. In magnetic atoms, the coupling can
be of a distinct origin due to the anisotropy of the interparticle
interaction potential. This anisotropy couples channels of dif-
ferent £ and m, and thus may yield FRs; see also sections 1.3.2
and 1.3.3. We note that the bosonic isotopes of Cr, Er, and Dy
do not possess hyperfine structure, unlike alkali atoms. Thus,
in these atoms, the hyperfine FR mechanism is absent, and FRs
arise from only interaction anisotropy. In contrast, their fermi-
onic isotopes possess hyperfine structure, and thus both coup-
ling mechanisms are present. Furthermore, we highlight that
magnetic atoms have large total F in their ground state. This
means that there are many more collision channels that can be
coupled than in alkali-metal atoms. Finally, we note that the
long-range character of the DDI also enables entrance chan-
nels of ¢ # 0, even for ultracold temperature, increasing once
more the number of channels that must be accounted for in the
collision problem. Next, we review the collisional properties
of Cr and Ln atoms, respectively.
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2.4.1. Feshbach resonances in chromium.  The bosonic iso-
topes of Cr have a spherical orbital wave function in its ground
state (’S3) and no nuclear spin. Thus, the short-range van der
Waals scattering of two ground-state bosonic Cr atoms is iso-
tropic and no interaction of hyperfine origin between colli-
sion channels arises. Consequently, a single anisotropic DDI
potential explains the emergence of FRs in this case. The DDI
couples channels with orbital angular momentum A¢ = 0,2,
and the total spin can vary by AS = 0, 2; see also sections 1.3.2
and 1.3.3. Thanks to its relative simplicity, the scattering fea-
tures in this case are very well accounted for by multichannel
scattering calculations.

The first observation of FRs between spin-polarised >2Cr
atoms in their absolute ground state (leading to a total spin
of the entrance channel S =6, mg = —6) revealed the exist-
ence of 14 FRs between 0 and 600G [195, 295]. Coupled-
channel calculations show that the relevant closed channels
are those with £ =2,4 and with § =2,4 and 6. This means
that second and fourth-order mixing are relevant. In addition,
it was shown that essentially a single closed-channel bound
state contributes to each FR. In this way, all except one of the
FRs could be assigned. The DDI provides the necessary coup-
ling terms, but only slightly affects the FR positions through
the molecular potential V,(r) themselves. Finally, the back-
ground scattering length can also be theoretically estimated
from the comprehensive coupled-channel calculations, giving
apg = 112(14)(10

Remarkably, two FRs, the ones with smallest By, are
explained by a d-wave entrance channel resonant with a s-
wave closed channel [195]. Such a d-wave entrance channel
is intrinsic to the DDI coupling mechanism. One of these two
FRs was later experimentally characterised [293]. The cor-
responding atom loss feature is asymmetric in B and shows
an unconventional dependence with decreasing temperature,
shifting to lower B and with decreasing width and amplitude;
see figure 2(a). The atom losses are shown to occur via three-
body recombination, but with a recombination coefficient
depending linearly on the density 7, in contrast to the usual 1n?
dependence of three-body processes. This unusual behaviour
is attributed to the slow tunnelling through the centrifugal bar-
rier in the collision channel, and the adiabatic elimination of
the fast collision with a third colliding atom. A precise ana-
lysis of this resonance yields a more accurate estimate of the
scattering length: a,, = 102.5(4)ag [293].

Besides the scattering between atoms in their lowest spin
states, the analysis of Feshbach spectra and their compar-
ison to coupled-channel calculations also provides informa-
tion about the strengths of the spin-dependent scattering. Gen-
erally speaking, scattering strengths depend on the total spin of
the pair of atoms colliding, which is preserved during the colli-
sion in absence of the DDI. The total spin S of the pair defines
a spin channel, corresponding to a given molecular potential
and thus to a distinct scattering length as. The spin-polarised
case of Cr corresponds to S = 6 and the background scattering
length mentioned above is actually that of ag—¢. In [195], addi-
tional spin channels were characterised, with as—4 = 564y,
as—» = —7ap [195]. Additional analysis of bulk spin relaxa-
tion dynamics resulted in a determination of as—y = 13.5a9
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Figure 2. Temperature variations of two FR line-shapes (a) around
B =8.3G in >>Cr and and (b) around B = 1.5G in '®®*Er.
(Temperature values given in legend.) In (a), the line shape has been
reinterpreted in terms of loss parameter, and the solid line results
from an analytical modelling of the loss process with a d-wave
entrance channel. Reprinted figure with permission from [293],
Copyright (2009) by the American Physical Society. In (b), the solid
lines result from coupled-channel calculations on the three-body
process in such a channel. Reproduced from [294]. CC BY 4.0.

[196]; see also section 3. The large differences between these
values provide evidence for the importance of spin-dependent
scattering in Cr. Knowing this is important for investigating
spinor physics with Cr; see sections 6 and 7.

2.4.2. Feshbach resonances in magnetic Lns.  The case of
magnetic Ln atoms is more intricate than that of Cr because
of their electronic structure is not spherically symmetric. This
results in an anisotropy of the van der Waals interaction, which
changes the short-range physics [205, 206, 209]. Because both
short- and long-range interaction potentials are anisotropic in
Lns, they both induce coupling between molecular channels,
which leads to FRs. Both anisotropic potentials were predicted
to substantially contribute to the character, distribution, and
prevalence of FRs in collisions among bosonic atoms [205].
A large number of scattering channels contribute to each res-
onance, making it hard for coupled-channel calculations based
on partial-wave decomposition to converge. Indeed, in [205],
£ up to 10 were considered, and later, this was extended up to
20 [296]. An analytical model estimates that ¢’s up to =40
must be considered to reproduce experimental observations
[296]. Needless to say, no perturbative treatment can be safely
applied.

First experimental observations of FRs in magnetic Lns
were performed on '%8Er and revealed an unusually large num-
ber of FRs within a narrow magnetic field range [172]. Soon
after, theory work of [205] predicted that the high Feshbach
spectral density is a general feature of magnetic Ln atoms. Sys-
tematic high-resolution trap-loss spectroscopy later extended
the observations of dense FRs in two bosonic Er isotopes from
0 to 70 G [296]; see figure 3(a). A statistical analysis of the
Feshbach spectra revealed correlations between the resonance
locations, with very similar characteristics for the two bosonic
isotopes. Based on the formalism of random matrix theory,
these correlations were quantified and found to be consistent
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Figure 3. (a) Trap loss spectroscopy measurements performed on a cold (7 = 330nK) gas of '®®Er polarised in its absolute ground state,
measured after holding 400 ms at B. (b) Nearest-neighbour spacing distribution from spectrum (a) (dots). s is the spacing in B, renormalised
by the mean spacing (inverse of the resonance density). It is compared to the uncorrelated Poisson distribution (dashed line) and to the
fully-correlated Wigner Dyson distribution (dashed dotted line) via a fit to the Brody distribution (solid line), measuring the degree of
correlation. The short dashed line shows results from coupled channel calculation with ¢ up to 20. Reproduced from [296], with permission
from Springer Nature.

with chaotic behaviour in the scattering of these atoms; see  fully chaotic at 712 K. In the high-temperature regime, the
figure 3(b). The fermionic case was also studied and shows a  shifts of Ho d-wave resonances deviate from a linear depend-
ten-fold larger density of FRs, increasing from 2.7 resonances ence on 7, which is expected at low temperatures, as observed
per Gauss for the bosons to 25.7 resonances per Gauss for in Er [294]. The authors speculate that this behaviour is
the fermions. This was attributed to the additional role of the responsible for the observed change in FR statistics.
hyperfine structure. A similarly high density of FRs was con- Because of the complexity and non-perturbative character
currently reported for four Dy isotopes, three bosonic and one  of the coupling between channels, the FRs cannot in general
fermionic, up to 6 G [297]. These measurements also revealed be assigned to a particular bound state. A few assignments
a much higher density for the fermionic isotopes as well as an  were, however, assigned in the low magnetic field region of
intriguing temperature dependence of the Feshbach spectrum.  Er [75]. This was accomplished by comparing measurements
The chaotic behaviour of both Er and Dy was thoroughly of the molecular state binding energy with coupled channel
analysed and compared in the collaborative work of [294]. calculations.
Interestingly, even though Dy shows a higher density of FRs Broader FR resonance can be observed on top of the forest
(4.3 resonances per Gauss), the degree of correlation in the of narrow FR features in the Ln atoms. Such features were
resonance locations is similar for the two species, and in already observable in the early FR scans of [296], where, e.g. a
fact, slightly larger for Er. This work also introduced a new 3.5 G-wide FR is found at 57 G for '®Er; see figure 3(a).
scheme for coupled-channel calculations, employing a basis A detailed study of such features was performed in Dy
comprised of B = 0G Hamiltonian eigenstates. Such abasisis [76] up to 600 G and revealed several more broad features.
more amenable to non-central scattering potentials, allowing Two of these broad features were extensively characterised via
more rapid computational convergence. This theoretical ana-  spectroscopy of the molecular state binding energy. Universal
lysis established the leading role played by the van der Waals  properties were found that are characteristic of open-channel-
anisotropy in the chaotic scattering behaviour: the DDI alone dominated s-wave FRs. Particularly noticeable is the decoup-
cannot account for the correlations. The slightly larger degree  ling of the broad FR from the chaotic background of the narrow
of correlation observed in Er FRs may be attributed to a larger  FRs, allowing one to observe the universal behaviour of the
short-range anisotropy. halo dimer binding energies over several Gauss to the low-B
The temperature dependence was further analysed in [294].  side of the FRs; see figure 4. A similar study was later repor-
At a statistical level, spectra at higher temperature exhibit a  ted in Dy [186]: two broad FRs with s-wave character are
larger density of resonances with the degree of correlation found at magnetic fields in the 20-30 G range. Broad FRs are
that is nearly unchanged. The temperature dependence of indi-  also observed in Ho [298].
vidual resonances reveals behaviour compatible with d-wave
entrance channel predictions, similar to the case in Cr [293];
see figure 2(b). The weakening and disappearance of higher 2.4.2.1. Scattering length measurements.  As is the case for
partial-wave entrance channels in the ultracold regime were other multi-electron atoms [10], ab initio calculations fail to
proposed as an explanation for the variation of the FR dens- predict the scattering lengths of Ln atoms. Instead, these must
ity with temperature. A subsequent work using Ho atoms also  be experimentally measured. A common technique involves
revealed a dense FR spectrum as well as a similar temper- the observation of cross-rethermalisation: one observes the
ature dependence [298]. In contrast to the Er system [294], rethermalisation dynamics of a thermal sample after excit-
the chaotic character of the Ho FR spectrum was observed to  ing it along one of its the three spatial directions [299]; the
increase with 7, ranging from intermediate at 72 K to almost  thermalization rate is proportional to the elastic cross section,
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which in turn is proportional to the square of the scattering
length. The proportionality relies on a theory prediction for
the average number of collisions necessary for thermalisation
and depends on the particular partial waves and interaction
involved in the collision [300]. Bohn et al [301] calculated
this for the anisotropic DDI, which was verified experiment-
ally in [302] using spin-polarised fermionic Er. This theory
allowed Tang et al [303, 304] to extract scattering lengths
from cross-rethermalisation measurements of two Dy isotopes
[303, 304]. The theory-experiment comparison resulted in a =
122(10) ag for '’Dy and a = 92(8) a, for '**Dy at B = 1.58G.
This field is at least 0.1 G away from any FR in either species.
These a-values, as well as their B-dependence, were also meas-
ured in [305] using a different method involving a detailed
analysis of the anisotropic expansion of thermal gases after
release from their confining potentials., The analysis relied on
the competition of the DDI and the contact interaction; see
section 4.1.2 for details. The results are consistent with the
cross-rethermalisation experiments: a = 154(22) a, for 12Dy
and a = 96(22) ay for Dy, but with larger error. A similar
measurement near a 5 G FR in '’Dy yielded a background
scattering length of a = 157(24) ay, which is consistent with
the lower-field measurement, but larger than that obtained with
cross-rethermalization [303, 304]. A third scheme relies on
the universal scaling of the molecular binding energy close to
broad FRs to extract scattering lengths in Dy. Such an ana-
lysis used a relatively high-field resonance in '**Dy to obtain
apg = 91(16) ao [76], which is in good agreement with the low-
B values of references [303, 305]. A similar study in '>Dy
yielded an, = 220(50)ao [186]. This is consistent with the
a = 154(22) ap measurement in [305], but larger than both the
5-G measurement in [305], and the a = 122(10) @y measure-
ment of [303].

For Er, preliminary cross-rethermalisation measurements
were first reported in [244] for the four bosonic isotopes in
the low-field regime. A simpler analysis of the rethermal-
isation rates than used in [303] yielded aps = 81(10)ao for
164y, apg = 72(13) ap for 166Fy, apg =200(23) ay for 168y,
and ape = 221(22) ay for '"°Er. In '7Er, the background scat-
tering length was first thought to be negative, but more recent
measurements have questioned this [187]. These Er aps meas-
urements were taken by averaging data obtained at different
B-values between 0.2 G and 1 G, away from FRs. A more
precise estimate was later developed to extract a and its B
dependence by loading a quantum gas into a deep 3D lattice
and performing lattice-modulation spectroscopy [306]. This
probes the Mott-insulator excitation gap, which is related to
the scattering length through the on-site interaction energys;
see also section 7.2. This technique yielded a = 137(1)ag at
0.4 G for '®8Er [306], and for '°°Er, it was used to make
a sequence of measurements of a versus B from 0 to 2.5G
[249]. In this range, the data are well-described by overlap-
ping FRs with a B-dependent background scattering length
apg(B) = 62(4) + kB, with k = 5.8(1.2) ao /G.

In the case of Ho, recent experiments reported scat-
tering length values using cross-rethermalisation. The first
such measurement yielded a background value of apg =
144(38)ap [298], while a subsequent experiment reported
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apg =90(11)ap via a more extensive set of measurements
[74].

We note that a debate regarding the exact values of the scat-
tering lengths in bosonic Er and Dy in the quantum degenerate
regime has arisen in light of measurements of these paramet-
ers extracted from the many-body physics of the droplet and
supersolid states; see also section 5. These differ from the two-
body collision-based methods described above. Central to the
debate is the appropriateness of the description of the many-
body physics based on perturbative MF and LDAs, on the one
hand, and on the other, regarding the relevance, in the regime
of interest, of corrections beyond the Born approximation and
the role of the momentum dependence in the two-body scatter-
ing description. That is, the many-body theory used to extract
scattering lengths in such finite-size quantum systems could
be as problematic as the use of ultracold thermal gases in
the former collision-based measurements. Those questions are
beyond the scope of the current section, but additional discus-
sions may be found in sections 5.2 and 5.3.4.

Concerning the scattering length itself, the most extended
discussions focus on the '**Dy case. Studies of single quantum
droplets provide estimates of the background scattering length
via a theory-experiment comparison of different many-body
properties, namely the critical atom number for the existence
of a self-bound droplet state and the frequencies of droplet’s
elementary excitations [246, 307, 308]. These investigations
yield values of apg = 62.5a9 and ay, = 69(4) ap at B~ 6.6G
and B = 0.8 G, respectively. While they are mutually compat-
ible, they are consistently lower than the measurement results
in [76, 303, 305] obtained with thermal gases. Ferrier-Barbut
et al [307] speculate that the discrepancy could come from
the different temperatures of the samples used in those two
sets of experiments and related momentum dependence of the
scattering [309]. Bottcher er al [308] extends the measure-
ments of the critical atom number of a self-bound quantum
droplet (see section 5.3.5) and was able to extract the ratio
between the background scattering lengths of the two dys-
prosium isotopes to be ag,162/abg, 164 = 2.03(6). Using ap, =
69(4)ay for %Dy [307] yields a value of ap, = 140(7)ay for
the background scattering length of '9’Dy. This agrees with
most of the values obtained from thermal samples within their
uncertainty [186, 303, 305]. In the Er case, we note that sens-
itive probes based on collective excitations of single macro-
droplets [249], supersolids [310], and roton excitations of
dBECs [311, 312] show a good agreement between experi-
ment and theory using the lattice-calibrated scattering lengths
values.

Finally, we note that little information is available on
Ln spin-dependent scattering, as opposed to the well-
characterised Cr system. One exception is the case of the
two lowest energy weak-field seeking spin states of fermionic
167Er, whose scattering have been experimentally investigated
in [313]; see also section 6. Extensive loss spectroscopy meas-
urements were performed in a limited B-field range (up to
2 G) and for varying mixture compositions. This enabled the
identification of both intra-spin FRs and inter-spin FRs; spin-
polarised loss spectra have also been observed in ''Dy for
its lowest energy weak-field seeking spin states [251]. Lattice
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modulation spectroscopy also characterised the B-to-a conver-
sion close to a relatively broad inter-spin FR. The background
scattering for the interaction of the two lowest spin-states is
apg = 91(8) ap. Theoretical investigations have also investig-
ated spin-dependant resonances [207].

An important difference between Lns and Cr lies in the ori-
gin of spin-dependent scattering. In contrast to Cr, the dom-
inant effect in Lns arises from their orbital anisotropy (i.e.
L +#0; see also section 2.2). This induces an interaction term
that couples the angular momentum of each individual atom
to the orbital momentum of the pair and results in sets of
molecular potentials with very different character versus Cr
atoms. More systematic studies, especially experimental, are
needed to fully elucidate the spin-dependent collisional phys-
ics. A relevant open question relates to the density of the Fesh-
bach spectra in Ln spin mixtures and in fermionic Ln iso-
topes. Regarding the latter, the density of FR spectra at high
field in fermionic Dy seem to be spin-dependant [251]. Eric-
son fluctuations, known from resonances in nuclear physics,
may provide an appropriate framework for explicating the field
dependence of the overlapping loss spectra [314] observed in
[251]. Interspecies scattering involving Ln atoms is also of
recent interest [187, 188, 315, 316].

2.4.3. Feshbach molecules of magnetic atoms.  Besides
tuning of a, FRs provide the ability to associate a pairs of free
atoms into a loosely bound molecule [20, 268, 289-291]. AFR
couples two states, the state of the two free particles scatter-
ing in the entrance channel and the bound state of the closed
channel. The relative energy of the two states is tunable via
the B-field thanks to their different magnetic moments. The
coupling of the two states yields an avoided crossing at B = By
where their bare energies coincide. By ramping B across the
resonance (from B > By to B < By), one can then drive the
population of the molecular state by (adiabatically) following
the low-energy state [289, 317-321]. Alternative approaches
use small-amplitude modulation of B at a frequency reson-
ant with the bound-state energy for B < By [322, 323], or
even further away from the FR via radiofrequency coupling
[324, 325]. Such protocols are commonly used in alkali metal
experiments, with typical conversion efficiency of few tens-of-
percents in the bosonic case and close to unity in the fermionic
case. Note that these molecules are not in their internal ground-
state, but in a highly excited (rovibrationnal) state. Close to the
FR, the properties of the weakly-bound molecule, referred to
as a halo-dimer, follow a universal behaviour.

By producing Feshbach molecules of magnetic atoms, one
creates ultracold gases of dipolar particles with even larger
permanent dipole moments. Indeed, compared to the bare
atoms, the mass m of the molecule is doubled while the mag-
netic moment 4 is also nearly doubled, resulting in a dipolar
length aqq o< my? eight times longer.

An experiment using Er has demonstrated and studied
the production of an ultracold sample of Er, Feshbach
molecules using B-field ramps [75]. Pure molecular samples
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Figure 4. Atom-loss spectrum (top) and measured molecular
binding energy (bottom) of '**Dy near a broad FR. The atom loss
spectrum exhibits a very high density of narrow resonances and one
broad feature. The binding energy of the weakly bound dimer
displays a universal quadratic behaviour (dashed line). The very
weak variation of the binding energy as a function of magnetic field
shows that the dimer has a magnetic moment very close to that of
two free atoms p ~ 20ug. Data originally published in [76].

were produced by the resonant removal of the remaining free
atoms. The gas contained about 2 x 10* Er, at 300nK with
typical densities of ~8 x 10'! cm ™3 and lifetimes of ~10ms.
Ultracold samples of molecules in four different molecular
states, associated with four different low-field FRs of °®Er,
were produced. The properties of the Feshbach molecules have
been further measured, in particular the magnetic moment,
which were found to be 1/ 1 > 11 for three of the four states.
By contrast, the bare atomic value is p/pup ~ 7. The impact
of the confinement geometry and relative dipole orientation
on the scattering properties of the Feshbach molecules has
also been investigated. In particular, a reduction of the relaxa-
tion rate in quasi-two dimensional geometry with out-of-plane
dipole orientation was observed.

In the Cr case, the study of Feshbach molecules has focused
on a single peculiar resonance with an d-wave entrance
channel [293, 326]. However, no ultracold sample has yet been
produced. In this case, the molecular state is very short lived
and studies have focused on the remarkable atom-loss beha-
viour associated with the special character of the resonance.

In the Dy case, studies have focused on the properties of the
halo dimers close to the broad FRs found at relatively large
B in two bosonic isotopes [76, 186], see also section 2.4.2.
The corresponding magnetic moments range from p ~ 18up
to =~ 20up; see figure 4. A striking observation is that these
halo dimers decouple from the many bound states coming
from the overlaid forest of narrow FRs. This makes the broad
FRs very promising for the production of ultracold gases of
highly magnetic molecules. They have not yet been invest-
igated, but this constitutes an interesting prospect for future
work.
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Table 1. Summary of the main atomic properties, scattering properties, and available quantum gases of highly magnetic atoms made of Cer,
Er or Dy. The electronic ground state is denoted ‘g.s.” The exchange statistic—fermionic (f) or bosonic (b)—is listed under ‘stat.” The
natural abundance is under ‘abund’. denotes.: I is the nuclear spin quantum number. e4q is the background value aqq/apg. ‘Degenerate gas’
lists the properties of the most populous gas of that isotope produced, as reported in journal articles. For all these, the BEC’s are almost

pure; i.e., the thermal fraction is small.

Atom gs. um(us) Stat.:isotope Abund. [ ada(ao) avg(ao) £dd Degenerate gas
Cr 783 6 b:Cr 83.79% 0 15.3 102.5(4) [161] 0.150(6) BEC, 5 x 10* [166, 167]
£:3Cr 95%  3/2 156 — — DFG, 10°, £ ~ 0.6 [174]
b:3Cr 435% 0 14.7 40(15) [327] 0.37(14) None
b>*Cr 2.36% 0 159 Unknown None
Er 3He 7 b:'®Er 26.8% 0 66.3 137(1) [306] 0.484(3) BEC, 1.5 x 10° [172, 191,
244]
b:'%Er 33.6% 0 65.5 68(5) at B=1G [249]  0.96(7) BEC, 10° [249]
f:17Er 23% 72 659 — — DFG: 4 x 10%, £ = 0.1
[173, 191, 244]
b:!"Er 15% 0 67 Preliminary estimate  0.30(3) BEC, 10* [187]
221(22) [244)
b:1%*Er 1.6% 0 647 Preliminary estimate  0.8(1) None
81(10) [244]
b:1Er 0.14% 0 63.9 Unknown None
Dy I 10 b:!%Dy 283% 0 130.7  Disagreeing 1.9(1)or 1.4(1)  BEC, 1.5 x 10* [170, 184,
estimates: 69(4) [307, 2501, 3.5 x 10* [328], with
308] or 92(8) [76, typically sizeable thermal
303, 305] fraction remaining.
b:'%2Dy 255% 0 129.2  most precise 0.92(5)-1.06(9) BEC, 10° [248],5 x 10*
estimates are 122(10) [189, 329]
[3031—157(4) [305]
15Dy 249% 512 130 — — None
f:191Dy 189% 52 1284 — — DFG: 4 x 10%, £ = 0.1
[251], 8 x 10%,
7- = 0.085(10) [188]
b:'Dy 23% 0 127.6  Unknown BEC, 10° [248]

2.5. Comparison between the different systems

Table 1 summarises the electronic, isotopic, scattering-related
properties as well as the characteristics of all the available
degenerate quantum gases for all isotopes, both bosonic and
fermionic, of the highly magnetic elements, Cr, Er and Dy.
The background e44 varies among the elements and isotopes;
e.g. it is eqq ~ 0.16 for Cr, varies between 0.9 < e4q < 1.9 for
Dy isotopes, and is between 0.3 < €49 < 1 for Er isotopes. All
isotopes exhibit FRs, which provide opportunities for tuning
£4d; see sections 2.4, 4 and 5.

With respect to degenerate gases, all three species offer
relatively large BECs of roughly similar sizes. The max-
imum population of the BEC depends on the isotope, not
only because of its natural abundance, but also because of
its scattering properties. In particular, isotopes with a back-
ground value of eqg = 1, or 44 < 0 (i.e. with a negative scatter-
ing length), are more challenging to condense. They typically
require a tuning of a during the evaporation process by setting
B close to a FR to stabilise the quantum gas at the MF level.
This is in particular the case for the most abundant isotope of
Dy, 164Dy, for which the BEC numbers are otherwise smal-
ler than for the '®’Dy isotope and Er’s most populous BEC.
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In fact, we point out that, due to the extreme density of FRs
in the spectra of open-shell Lns, the choice of the B value at
which the evaporative cooling scheme is performed is a cru-
cial parameter to adjust for all isotopes of Er and Dy, and even
more so for their fermionic isotopes. The population of the
achieved quantum gases greatly depend on it. Large and cold
DFGs of Dy and Er are also possible due to the ability to per-
form direct evaporative cooling. The quantum degeneracy of
fermionic Cr has been achieved, but so far, is smaller and not
as cold with respect to the Fermi temperature.

3. Ultracold dipolar scattering

The notion of scattering in the ultracold regime has been
briefly introduced in sections 1 and 2. We will now extend our
overview on ultracold collisional physics before describing the
special features of the scattering induced by the DDI. Topics
include the universal properties of elastic dipolar scattering
(i.e. coming from spin-conserving collisions; see section 3.2);
the special features of inelastic dipolar scattering (i.e. dipolar
relaxation), including its local character and suppression via
exploiting quantum statistics and confinement (section 3.3);
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and finally the anisotropic character of (elastic) dipolar scat-
tering (section 3.4).

3.1 Relevant aspects of scattering theory

Collisions among atoms in dilute ultracold gases are described
within quantum scattering theory, which accounts for the long-
distance behaviour of the wavefunction encompassing the rel-
ative motion of two colliding atoms, the so-called collisional
wavefunction [10, 78, 265]. In brief, any incident wave is
decomposed in plane waves of momentum k, whose scatter-
ing yields outgoing spherical waves of amplitude f(k,n) in the
direction rn = r/r. The scattering amplitude f directly relates to
the interaction potential V(r) and, within the first-order ‘Born’
approximation, f simply reduces to the Fourier transform of
V(r). The scattering cross section ¢ then corresponds to the
spherical integration of the square norm of f over the scatter-
ing direction o(k) = [ | f(k,n)|*d*n.

3.1.1. Partial wave expansion. In the case of an isotropic
potential V(r) = V(r), expanding the collisional wavefunction
in spherical harmonics is a very powerful tool as each of
the resulting radial waves are decoupled from one another.
These are indexed by / (and m;), corresponding to the quantum
numbers for the orbital angular momentum norm (and pro-
jection). For an isotropic potential, only spherical harmon-
ics with projection m; = 0 contribute, while in the case of
anisotropic interactions, m; # 0 harmonics may also play a
role. Each spherical harmonic component of the expansion
is an independent solution of the 1D Schrodinger equation,
where the potential V(r) is augmented by a centrifugal term
Ue,(r) = R?I(1+ 1) /mr?. For the isotropic case, asymptotic-
ally, the outgoing wave differs by only a phase shift §; from the
incoming wave. Therefore, the general scattering amplitude f
decomposes into:

:0 =0
(25)

where 6 describes the angle between k and r and varies
between 0 and 7. Here, P; denote the ordinary Legendre poly-
nomials. The scattering cross section then reads:

o0
=Y oik) (26)
=0
47T .2
01(k) = 2 (2 + 1) sin? 5 (k)] 27)
3.1.2. Ultracold limit and short-range interactions. ~ For an

interaction of short range b, we can define the temperature
below which the system is in the ultracold collisional regime as
kpT < h?/mb?. In this regime, the centrifugal barrier at r = b
is much larger than the typical kinetic energy of the colliding
particles such that they do not feel the interaction potential in
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[ >0 harmonics (they are reflected at r > b). Therefore, only
[ =0 contributes to the scattering.

3.1.2.1. Scattering length.  In the ultracold limit, the scatter-
ing amplitude and the cross section tend to finite values given
by the kK — 0 limit of their / =0 contributions: f =~ f; — —a,
and o ~ 0y — 4ma?. This is for the case of distinguishable
particles given by the sum over all / in equation (26); see
section 3.1.3 for the role of quantum statistics in scattering.
The s-wave scattering length a is then the only (non-universal)
parameter describing the ultracold scattering physics and
it relates to the s-wave phase shift via a = limy_, Jo (k) /k.
Hence, in the ultracold regime, the details of the short-range
interaction are all represented by the value of a single para-
meter. Moreover, potentials yielding the same value of a are
interchangeable. It is therefore useful to employ a particu-
larly simple form of the potential, the contact pseudo-potential

U(r) = g6(r), with g = *=2a [9_ 10, 78, 90, 330, 331].

3.12.2. Power-law potentials and the case of van der Waals
interactions. ~ The scaling of ¢;(k) can be deduced from
the scattering potential form by solving the associated 1D
Schrodinger equation. As introduced in section 1, in the case
of a power-law interacting potential V(r) = V,(r) = —C,/r",
one finds that §;(k) scales as k1 if | < (n — 3) /2 and as k"2
otherwise [78, 79]. Therefore, the ultracold regime described
above only holds for potentials decreasing sufficiently fast,
asn>3.

Typically, this condition is satisfied by the dominant inter-
action between two atoms in a dilute gas, the van der Waals
interaction, which is an n =6 power law. This scaling arises
from the virtual exchange of photons between two fluctuating
electric dipoles: while on average the electric dipole of each
atom is zero (in the absence of an electric field), a dipolar fluc-
tuation of the electronic distribution of one atom can distort
the other’s, leading to the product 7—3.r~3 for the interaction
dependence. The ultracold limit is defined (in the absence of a
direct DDI) by kzT ~ h?/mb?. Associating b with the van der
Waals length r.qw = (mCs/h?)'/#, we find that the ultracold
limit is typically reached for temperatures of hundreds of uK.

In the ultracold limit, the scattering cross section for partial
waves [ = 0, 1 at low collision energy E = h?k? /m follows the
so-called Wigner threshold law [332]:

o1(E) x

while for I > 2, oy(E) oc k® oc E3. Only the [ =0 cross section
does not vanish in the £ — 0 limit. This is in contrast to
the case of interacting polarised dipoles in which n=3. In
this case, the above scaling laws—based on the assumption
of a short-range potential—are not valid, and we will see
(section 3.2) that all partial waves contribute.

K o E*, (28)

3.1.3. Role of quantum statistics. ~ Quantum statistics plays
a prominent role in the ultracold regime, as the wavefunc-
tion should be appropriately symmetrised for collisions among
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identical particles, i.e. atoms of the same isotope in the same
spin state. Indeed, the total collisional wavefunction of any
pair of atoms—which is comprised of the tensor product of
wavefunctions describing both their spin and orbital degrees of
freedom—must be symmetric (antisymmetric) under particle
exchange for bosons (fermions). For example, if their spin
state is identical, then their motional state must be symmet-
ric (antisymmetric), and thus only even (odd) / partial waves
contribute to the partial wave decomposition of equations (25)
and (26). These expressions may be rewritten as:

£(k,0) %Ze(l)(ZH— 1) (emf(k) - 1) Pi(cos®), (29)
=0

where 6 now varies between 0 and 7 /2 and €(/) depends on the
statistics of the particles. For bosons (fermions), (/) = 0 for /
odd (even) and 1 in the diametric case [ even (odd). Similarly:

a(k) =" _oi(k), (30)
1=0
o1(k) = %6(1)(21+ 1) sin?[5;(k)). 31

For van der Waals interactions, the Wigner threshold law,
equation (28), implies that the cross section for the lowest par-
tial wave accessible to fermions, /= 1, vanishes as E2, while
for bosons it tends towards a constant 87 a”. One key con-
sequence lies in the fact that while ultracold bosonic gases can
be evaporatively cooled to degeneracy via short-range elastic
thermalizing collisions, identical fermions cannot.

3.2. Universal elastic dipolar scattering

The above cross sections for van der Waals interactions may
be said to be non-universal, in that they depend on a parameter
a that cannot be calculated from fundamental constants and
fixed parameters of the system alone (like mass or quantum
numbers). Indeed, a is calculable ab initio within state-of-the-
art methods only for light systems consisting of few electrons,
such as hydrogen and helium [333, 334]. Accurately predict-
ing the scattering length for more complex systems is very
challenging. In contrast, we will see that it is possible to derive
the dipolar cross section from first principles. This is due to the
long-range nature of Vg4, which often allows one to neglect the
short-range part of the interaction potential. The longer-range
character of the DDI (n = 3) also leads to a different Wigner
threshold law; namely, one that exhibits a constant, non-zero
cross section even for identical fermions.

In contrast to the form of the J;(k) scaling presented above,
for n =3, §;(k) ~ k for all partial waves such that they all con-
tribute to the scattering cross section even in the low-energy
limit. Specifically, one can write &;(k) ~ Ak* ! + Bk, where A
is the strength of the short-range part of the potential and B is
the strength of the long-range dipolar portion beyond the cent-
rifugal barrier. A and B may be calculated under the first-order
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Born approximation [301, 335-339]. This yields the total cross
Sections Tjeven (T0dd) for collision in even (odd) partial waves:

167

Oleven = 4a® + el D?, (32)
16m ,
=—D

Tiodd = 5707 (33)

with D = §?d*m/h* = 3ay, and agy as defined in equation (6).
For indistinguishable bosons (fermions) 0 =2 Gjeven (0 =
20104d), While for distinguishable particles 0 = Gjeven + Tlodd-

Regardless of the exchange statistics of the atoms or the
value of a, the cross sections of dipolar atoms are finite and
energy independent as k — 0. Since D contains only funda-
mental constants and known quantum numbers, we may con-
sider its contribution to the cross section universal—i.e. not
depending on the details of short-range physics [339]. How-
ever, this statement ignores the effects of molecular poten-
tials at certain values of magnetic field, as pointed out in [161,
336] and later discussed in section 3.3.1. In addition, as the
dipole strength is increased, corrections beyond the first-order
Born approximation can cause D to differ from its universal
value [340].

An important consequence of the dipolar Wigner threshold
law is the fact that identical dipolar fermions can evaporatively
cool themselves even at low temperatures. This effect was
used to cool spin-polarised fermionic polar molecules of KRb,
using forced evaporation in an ODT, to T = 2TF [341]—most
recently 7'~ 0.6Tr was achieved in a similar system [42]. Sub-
sequently, a Fermi gas of identical, spin-polarised '®' Dy atoms
was evaporated to T/Tr ~ 0.7 with ~3x 10 atoms remaining
[171]. The deeply degenerate regime was then reached with
identical fermions of '®’Er [173], achieving T/Tr ~ 0.1 with
several times 10* atoms remaining. Similar temperatures and
trap populations have also been reached with ''Dy [251].

In [173], the spin purity of the sample was demon-
strated and the elastic cross section was measured via cross-
dimensional rethermalisation measurements [299]; see also
section 3.4.1. The extracted elastic cross-section at small
T/Tr was in good agreement with the universal value of
equation (33) without adjustable parameters. Moreover, this
study showed that the evaporation efficiency is among the
highest achieved in an ultracold gas experiment. This stems
from the Pauli suppression of inelastic processes for single-
spin fermionic assemblies. Together, these studies demon-
strated the efficacy of universal elastic dipolar scattering for
DFG production. This is a far simpler technique than sympath-
etic cooling with spin or species mixtures [342].

3.3. Universal inelastic dipolar scattering: dipolar relaxation

A large dipole moment enhances not only elastic dipolar
scattering but also the inelastic rate; see also section 1.3.3.
While rapid elastic scattering is useful for efficient evaporative
cooling, inelastic scattering—dipolar relaxation in this case—
usually leads to gas heating and population loss. Inelastic
dipolar scattering arises from the anisotropy of the interaction
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and causes atoms to change their spin state. In the presence of a
finite external magnetic field, the degeneracy between the sub-
levels of the ground state hyperfine manifold is lifted via the
Zeeman effect. In magnetic fields inducing Zeeman splittings
larger than kT, atoms in metastable spin states relax to lower-
energy, stronger-field-seeking Zeeman substates. The Zeeman
energy is released into the orbital motion of the collision pair,
conserving total orbital momentum by increasing the atoms’
kinetic energy. Atoms in MTs whose spins have flipped to
strong-field seeking states are lost. Lost too are atoms confined
in traps—magnetic or otherwise—that are shallower than the
released Zeeman energy. Otherwise, the relaxed atoms may
remain confined but the change in their motional state leads
to an overall heating after rethermalisation via elastic colli-
sions. We note that for Zeeman splittings similar to or smal-
ler than kT, the reverse process called dipolar promotion is
allowed. This was used for demagnetisation cooling of a chro-
mium gas; see section 6.3.3.1 for details. For Zeeman split-
tings similar to the harmonic trap excitation energy hw, the
change in the motional state of the colliding atoms is spec-
troscopically resolvable. This constitutes an atomic equival-
ent of the Einstein—de-Haas effect; see section 6.3 for details
and [16].

Only atoms in their lowest-energy spin state—i.e. the max-
imally stretched strong-field-seeking state—are immune to
inelastic dipolar scattering (and spin exchange) [10]. In this
section, we will show that dipolar relaxation can be seen as
a short-range process for a large-enough magnetic field. As
a direct consequence, we will describe how confinement can
be used to control dipolar relaxation. We will also see that
exchange statistics plays a role in these inelastic scattering
processes. In particular, in Fermi gases, dipolar relaxation is
suppressed for certain spin configurations.

3.3.1. Inelastic cross sections.  The DDI in equation (2)
admits non-zero matrix elements between pairs of atoms with
differing spin and orbital angular momentum. The relevant
selection rules are Ami. = 0,41 for each of the two atoms
i = 1,2 and Al = 0,42 for their orbital motion. To conserve
total angular momentum, An + Zi:l,z Am’, =0 must be
satisfied. The cross sections may be calculated in a first-order
Born approximation treatment [85, 161, 343]. The appropriate
expression, neglecting all other interatomic potentials [161],
but including direct and exchange terms, is:

(471.52 kik: {/de (ki —k")|*5(|k’| — k¢)dk

/Vdd(ki — k"W (—ki —k")5(|k'| — k¢)dk’
(34)

where \//;1(k) is the Fourier-transformed matrix elements
of equation (2) and ¢ = [1,0,—1] for identical bosons, dis-
tinguishable particles, and identical fermions, respectively
[16, 85]. The k; and k¢ are the initial and final relative
wavevectors, respectively.
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The cross sections for a collision channel starting with a
two-body stretched spin-state |F,mp = +F;F,mr = +F) and
ending in either the same state (Am; = 0) or a single (Am; =
1) or double (Am; = 2) spin-flipped state form a hierarchy in
powers of the spin F [85, 161]:

00 = %F“ (“O(i;‘;i)zm)z [L+eén(1)], (35
87 s ( polgrus)’m\’ ks

o1 =5F (W) {1 eh(klﬂki, (36)
87, (1o(grus)*m ke | ke

o2 = 1<F (477712) {Heh(kl)}ki. 37)

In these expressions, o is the elastic cross section dis-
cussed in the previous section; o1 and o, are the cross sections
for single spin-flip and double spin-flip dipolar relaxation pro-
= 1 T
are dictated by the energy conservation condition and depend
on the number Am; of spin flips involved in the collision. This
is because AEa,, depends on the change in kinetic energy of
the atomic pair. Typically AEa,, = Am;AE, where the Zee-
man energy splitting AE o< B. The value of 4 (x), defined on
(1,00), monotonically increases from (1) = —1/2 to h(x —
00) =1-—4/x*[85, 161, 339].

The inelastic cross sections in equations (36) and (37) con-
tain only fundamental constants, atomic quantum numbers,
and kinematic variables. Therefore, just like the elastic dipolar
collisions, one may consider inelastic dipolar scattering a uni-
versal process in the first-order Born approximation limit.
We note that [161] extended the cross section calculation to
consider the effect of molecular potentials, and in particular,
that of the short-range van der Waals interaction. The authors
demonstrate theoretically and experimentally the effect of a
finite scattering length on the dipolar relaxation cross section.
While equations (36) and (37) are good approximations at low
magnetic field for which k¢a < 1, the effect of the molecular
potential becomes important when B is such that k¢a > 1. This
leads to deviations from universal behaviour (see below).

cesses, respectively. The kinematic terms

3.3.2. Inelastic cross section measurements.  Experiments
typically do not give direct access to the cross section, but
rather to collisional rates. In a gas at thermal equilibrium, the
dipolar relaxation collisional rate is deduced from the above
cross section via By, = 2{(01 + 02 ) Vrel )tn, Where vye| = 2hk; /m
describes the initial relative velocity between a pair of particle
and (.)y, defines a thermal average over the gas. This colli-
sional rate has two contributions, one from collisions involving
single spin-flips and one from double spin-flips respectively.
The latter is ﬁdi’z) = 2(01 2Vrel) th-

Following earlier studies of weakly magnetic atoms
[344-346], dipolar relaxation was quantitatively studied in
bosonic Cr [85, 347]. In these studies, 2Cr was magnetic-
ally trapped in the highest energy (i.e. low-field-seeking) Zee-
man sublevel |S,m;) = |3,3). Dipolar relaxation in Cr takes
the atoms initially in the state |S,my;S,ms) =|3,3;3,3) to
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13,3;3,2)s (]3,2;3,2)) via a single (double) spin flip, where S
denotes the symmetrised total wave function. The spin-flipped
atoms may be lost from the trap or, if not, heat the gas due
to their increased kinetic energy. The single and double spin-
flip processes were characterised by studying both the rate
of population loss from |S,m;) = |3,3) and the rate of tem-
perature increase in the gas. The overall dipolar relaxation
rate was found to be four orders-of-magnitude larger than in
weakly magnetic alkali-metal atoms [85]. Moreover, the data
were in reasonable agreement with cross section predictions
based on the first-order Born approximation given above, i.e.
equations (36) and (37).

Dipolar relaxation processes limit the temperature and
density achievable in magnetically trapped gases of highly
magnetic atoms. In contrast, optical traps enable the trapping
of all Zeeman sublevels, and in particular of the lowest of
these states, thus providing immunity to dipolar relaxation and
opening the way to reaching higher gas phase-space densities.
Additional dipolar relaxation data for Cr [161] and Dy [164] at
lower temperatures (100s of nK) were performed using optical
trapping [348]. In optical traps, because of limited trap depth,
the particles involved in dipolar relaxation are typically lost
(except at very low magnetic field, see section 6 for details)
and loss spectroscopy enables the characterisation of the col-
lision rate. These additional experimental results also agreed
well with predictions using the first-order Born approxima-
tion. Because the first-order Born approximation is valid for
only weakly interacting systems (stronger interactions cause
higher-order terms to be non-negligible), these findings imply
that the atoms’ DDI are not so strong as to invalidate this
convenient approximation. To conclude, the first-order Born
approximation should hold for dipolar collisions among any
element (Dy being the most magnetic stable element of the
periodic table) as long as the atomic density remains on a sim-
ilar scale as investigated in these works. Such densities are typ-
ical of repulsive three-dimensional gases.

We note that the magnitude of o; for Dy at B=0 can be up
to 100x-larger than that of the alkali metal caesium. In addi-
tion, [164] pointed out that, while the ratio of oy /0, = F Tk
1 for the stretched states of large-spin atoms, i.e. those with
|mp| = F, these same atoms exhibit large ratios of o, /0 for
states near mp = 0. Indeed, o, for these states can be larger
than o for the stretched states: one cannot avoid dipolar relax-
ation simply by employing spin states near myp = 0.

3.3.3. Interaction range for dipolar relaxation. =~ While the
elastic dipolar interaction is long-ranged, [161] shows that
the dipolar relaxation processes are intrinsically short-ranged,
despite the same 1/7° scaling. This effect stems from the
reduced overlap between the incoming and outgoing waves
due to the increase in kinetic energy. Specifically, while the
integral overlap of equation (34) for o involves incoming
and outgoing waves oscillating at the same frequency (k;),
for inelastic collisions, the incoming and outgoing wavefunc-
tions oscillate at different frequencies and become spatially
mismatched at long distance, averaging to zero. Assuming a
vanishingly small collision energy (low T'), the range for this
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effective cancellation of the overlap, Ry,, scales as 1/ky . This
is set by the release of Zeeman energy in the spin relaxa-
tion. Hence, the range of dipolar relaxation decreases with B
following:

h
N

In terms of partial-wave decomposition, dipolar relaxation
occurs at the interparticle distance Ry, that matches the dis-
tance at which the energy released in dipolar relaxation AE =
gripB is compensated for by the centrifugal energy of the
output channel. This simple statement assumes that the input
channel is [ = 0, which is usually the case at low 7. (To satisfy
the 0/ = 2 selection rule, the output channel is [ =2.)

The localised character of dipolar relaxation has been
revealed in the interplay between dipolar relaxation process
and other interatomic (molecular) potentials in [161]. This res-
ults in variations of the relaxation rate with B that deviate from
that expected from the first-order Born approximation when
neglecting the effect of molecular potentials; specifically, the
rate can dip far below this expectation at finite B. This strong
reduction of dipolar relaxation is shown to arise from a node
in the initial wavefunction, preventing the presence of pairs
of atoms at an inter-particle distance corresponding to the dis-
tance Ry, at which dipolar relaxation occurs. This provides a
factor of 20 reduction in the relaxation rate versus the rate pre-
dicted by the first-order Born approximation. This reduction
relies on a non-universal molecular potential configuration of
32Cr and it cannot be directly extended to the other highly mag-
netic atoms due in particular to the complexity of their FR
spectrum.

Ry (B) ~ (38)

3.3.4. Quantum statistics and dipolar relaxation: Bose
enhancement and Fermi suppression. Now that we have
discussed the short-range nature of dipolar relaxation, we
pivot to a discussion of how this fact combines with quantum
statistics to affect relaxation rates. As with the short-ranged
van der Waals interaction (see section 3.1.3), one might expect
a suppression of collisions between identical fermions due to
quantum statistics. Indeed, this is the case, because identical
fermions cannot surmount the centrifugal barrier of the low-
est quantum statistically allowed partial wave [=1: since
identical fermions cannot closely approach, the short-ranged
inelastic DDI does not lead to dipolar relaxation of their spin.
Conversely, we will show below that the relaxation rate is
enhanced for identical bosons, since they can collide on the
barrierless / = 0 partial wave.

The dependence of the relaxation rate on quantum stat-
istics is manifest in the form of the terms containing the
ratios of incoming and outgoing momenta in equations (36)
and (37). At high B and low T, the kinematic terms diverge
as <%>th o /B/T, where the th denotes a thermal average. In

this limit, o vanishes as 4\/7’/73 for indistinguishable fer-
mions (€ = —1), while it increases as 2\/37" for indistin-
guishable bosons (€ = +1) and is \/m for distinguishable
particles (€ = 0). The relative suppression ratio in this limit
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Figure 5. Dipolar relaxation for bosonic 162Dy (mr = +8) and
fermionic '8! Dy (mr = +21 /2). Two-body collisional loss rates for
162Dy (squares) and 161Dy (triangles). Curves are calculated
collisional loss rates using equation (36) at 7 ~ 400 nK with no free
parameters. Reprinted figure with permission from [164], Copyright
(2015) by the American Physical Society.

becomes glermions /gbosons o 2T/B. This scaling exhibits two
important facts: (a) Dipolar relaxation rates grow worse for
identical bosons versus B, e.g. o for bosonic Dy is 10? times
larger than Cs’s at only a 1 G field; (b) oy > can be suppressed
for identical fermions, e.g. dipolar relaxation in fermionic Dy
is only 10x-worse than Cs’s at a few G, as experimentally
demonstrated in [164]. It is remarkable, and counterintuit-
ive, that the more exothermic the fermionic dipolar relaxation
would be, the less likely they are to occur. This constitutes
another striking example of the role quantum statistics plays
in ultracold collisions.

Figure 5 shows measured dipolar relaxation rates for spin
polarised bosonic and fermionic Dy. [164] also shows the
fermionic suppression of dipolar relaxation of spin mixtures
for processes in which the output state of the fermions con-
sists of identical spins [161]. This corresponds to the time-
reversed, state-changing process of indistinguishable fermi-
ons colliding. Importantly, the stability of a spin mixture in
the lowest-two Zeeman states opens interesting prospects for
the study of many-body spin physics. In particular, one could
explore how the DDI impacts the BEC-to-BCS crossover (see
also section 4.2) [13]. The stability of these states was also
exploited for the long-lived implementation of artificial SOC
in Dy gases; see section 6.4.1.

3.3.5. Control of dipolar relaxation via confinement. ~ Con-
finement of atoms in lower dimensions can also suppress
dipolar relaxation rates through the phase-space reduction of
outgoing scattering channels. That is, the relaxation rate can
be lowered via the interplay between the range of the dipolar
relaxation process and the length scales of the confinement
potential. Following equation (38), when the magnetic field B
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Figure 6. Control of dipolar relaxation in reduced dimensions. The
false colour absorption image is a band mapping of the atom
population trapped in a 2D optical lattice. (a) Integrated population
profile along z yields populations in the different Brillouin zones
(BZ). Below the threshold magnetic field for dipolar relaxation,
only the first BZ is populated (grey profile with the sharper peak).
Above the threshold, the first transverse excited band (second BZ) is
populated (red profile with the wider peak). (b) Integrated
population profile along y shows the (1D) velocity distribution in the
sites of the 2D lattice. Above threshold, vibrational de-excitation of
atoms from excited bands create a non-Gaussian distribution.

(c) Fraction of atoms detected in the first excited band as a function
of the Larmor frequency after a 25 ms duration allowed for dipolar
relaxation. The lattice depth is 25E, which sets a threshold Larmor
frequency of 120 kHz. Below threshold, dipolar relaxation is
reduced by three orders of magnitude. Reprinted figure with
permission from [162], Copyright (2011) by the American Physical
Society.

is small, dipolar relaxation takes place at large inter-particle
distances. Dipolar relaxation thus strongly depends on the
trapping geometry, provided the size of the cloud is compar-
able to Rpg. This phenomenon was demonstrated in [161-163]
for the case of 1D, 2D, and 3D optical lattices. In [161], a 1D
optical lattice was shown to reduce dipolar relaxation in Cr by
a factor of seven compared to a 3D trap when AE was smal-
ler than the gap to first transverse excited state. The dipolar
relaxation rate was further suppressed—by three orders of
magnitude—in a 2D optical lattice of >Cr [162]. This was
achieved below the threshold B-field determined by this gap
condition for AE. Interband transitions mediated by dipolar
relaxation were observed above this threshold, as illustrated in
figure 6. In the specific case of a deep 3D optical lattice [163],
it was observed that dipolar relaxation becomes a resonant pro-
cess as a function of B due to the quantisation of kinetic energy
in the 3D-band structure. We see that by adjusting confinement
and the magnetic field, dipolar relaxation can be either elim-
inated (e.g. to study spinor physics at constant magnetisation),
or be used to couple different lattice bands. This then realises
an intrinsic nonlinear SOC in the lattice [163, 349].
Modifications to dipolar relaxation rates were also demon-
strated in [161] using RF fields. While only an increase in
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relaxation rates was experimentally demonstrated, the work
showed that RF-dressing might serve as a valuable tool to con-
trol dipolar relaxation.

3.3.6. Dipolar relaxation and spinor physics.  Section 6 will
describe in more detail why the large spin of the highly mag-
netic atoms presents attractive prospects for the construction
of exotic spinor states and many-body phases. Dipolar relax-
ation can play a positive role in this regard: magnetisation-
changing collisions open the door to the exploration of spinor
physics under conditions of free magnetisation. For example,
controlling the field at the mG level makes the Zeeman energy
AFE comparable to thermal excitations of ~kg100 nK. This
induces spontaneous, incoherent demagnetisation from the
absolute ground state. Further control of the field down to the
100 uG level allows AE to be of the order of spin-dependent
interactions. This would enable the observation of spinor
phases driven by contact interactions under free magnetisa-
tion. This degree of control has already been achieved in cur-
rent ultracold atoms experiments [350]. With even better con-
trol, possible experimentally, one can enter the regime where
dipolar relaxation is relevant from the many-body point of
view. For example, if Ry, > d, where d = n~'/3 is the average
particle distance, then many-body effects may arise. Interest-
ing vortex structures may appear due to the Finstein—de-Haas
effect since the orbital angular momentum is increased from
spin relaxation [351-353]. Strongly rotating and interacting
Fermi gases approaching a Laughlin state may appear [354].

In general, however, dipolar relaxation has unfortunate
consequences for the study of many-body spinor physics in
fields larger than those considered above or outside of 2D or
3D lattices where it can be strongly suppressed. High dens-
ities are needed to enhance the interaction energy, but fast
dipolar relaxation can render systems with metastable spin
states too fragile to observe in (near-)equilibrium situations.
Indeed, dipolar relaxation for all metastable spin states in
bosons is particularly severe, and only a few metastable spin
configurations for fermions are sufficiently long-lived [164].
For example, long-lived mixtures of |F, —(F — 1); F,—F) were
achieved in fermionic Dy and Er [164, 313] (see section 6.2.4)
and the same set of states was used to generate SOC in fer-
mionic Dy [251]; see section 6.4.1. The study of out-of-
equilibrium dynamics is also possible for time-scales up to the
dipolar relaxation time scale [257, 355]; see section 6.2.3.

3.4. Anisotropic scattering

We now return to the discussion of elastic dipolar scatter-
ing and explore manifestations of the anisotropic nature
of the DDI on scattering into different directions in space.
This 3D scattering is characterised by the dipolar differen-
tial cross section j—g From the scattering theory reviewed
in section 3.1, we see that the differential cross section
directly relates to the scattering amplitude ;%(k,n) =

| f(k,n)|*. The expressions d‘;‘;f, including both the con-

tact interaction and DDI, for identical bosons and fermi-
ons in the first-order Born approximation are, respectively:

dog , D? |4 2a 2(’% é)2—|—2(ic é) —4(’%@) (l}/é> (l} i(l)
d—Q(k,k)—? 37 300 N ; (39
da 1 (kk
- _ M7 2 o 2
@(th) o(Prey) =D 9[72a 24a(1 —3cos"n)
dS2 5 411 —30cos® 7+ 27 cos* 1] 41)
~ ~ ~ 2 ~/ 2 ~ A~/
4(keé)(k €)—-2]|(ké) + (k€ ] k.k
[l ) 2 ) )] ) o
3 |- (k) ) 0F(Pyy) =D 3 [34+18cos’n—13cos*n].  (42)

(40)

where k and k' denote the relative momenta before and after
the collision, with directions k= |’,:—‘ andk = |’,§—i| [301, 356].
The dipole moments are aligned along the B-field direction &.
These are nontrivial functions of the relative orientations of
the three directions in the problem, the incident and scattered
wavevectors and the polarisation direction of the dipoles. The
total dipolar cross sections are found by integrating these
expressions over df);+ and are shown in figure 7. For a gen-

eral angle 1) between k and ¢, these are:

30

Note that the results of equations (32) and (33) correspond to
angle-averaged versions of the above expressions.

3.4.1. Anisotropy of rethermalisation. ~ The anisotropy of the
differential cross section may reveal itself in the thermalisa-
tion dynamics, and in particular, via the thermalisation rate as
a function of the angle A\ between & and the axis along which
energy is imparted. This can be studied in cross-dimensional
rethermalisation experiments. Cross-dimensional rethermal-
isation (relaxation) is a method for measuring the total elastic
cross section wherein the gas is brought out of thermal equi-
librium by heating it along one or two of three directions
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Figure 7. (a) Total dipolar cross section o = %(k,k’)dﬂk/ in
units of the dipolar length aq = aqa/3 versus the angle 7 between

the incident scattering direction k and the polarisation direction €.
The curves are for distinguishable particles (solid black), identical
fermions (dashed blue), and identical bosons (dotted red). (b) 3D
plots of ¢ as a function of k with € set to the vertical axis. Reprinted
figure with permission from [301], Copyright (2014) by the
American Physical Society.

[299]. One then observes the time for the temperature in
the third direction to equilibrate. The time constant 7 for
this typically exponential relaxation process may be related
to the cross section via 7 = «/nvo, where n is the average
number density, v is the mean relative speed, and o is the
elastic cross section. The anisotropy of the differential cross
section appears through the parameter o, which is the num-
ber of collisions, on average, for rethermalisation. For s-wave
(p-wave) collisions, o = 2.5 (25/6 =~ 4.17) [300]. However, for
dipolar particles, « becomes angle dependent due to the aniso-
tropic differential cross section [301]. Its value is plotted in
figures 8(a) and (b) versus the angle \ between the axis along
which energy is imparted and é. We see that a can change
by more than a factor two versus angle for fermions, while
slightly less than two for bosons. The control of A is there-
fore an important tool for optimising, e.g. evaporative cooling
efficiency: rethermalisation of fermions (bosons) is far more
efficient at 45° (90°) than at 0° or 90° (0°).

The large anisotropy in the rethermalisation of dipolar
gases was experimentally demonstrated in ultracold gases of
fermionic '®’Er [302]. For fermionic atoms, ¢ is simply given
by the universal formula equation (33) so that a measurement
of 7 directly provides «. Figure 8(c) shows measurements of
« in agreement with the dependence predicted in [301]. The
authors also reported the reduction in rethermalisation rate
due to Pauli-suppression of scattering once 7 was sufficiently
lower than T’y (see section 3.2 and equations (32) and (33)).
Unlike «, the suppression factor was observed to be independ-
ent of )\, implying that the occupation of the final density of
states leading to Pauli-blocking is mostly unaffected by the
anisotropy of the DDI.

Cross-dimensional  rethermalisation experiments in
ultracold gases where also performed in bosonic isotopes
of 164Dy, 162Dy [303] and of '®*Er, 1%Er, 198Er and 7Er [75].
These studies measured the unknown values of the scattering
lengths a of these atoms by using either the theoretically pre-
dicted « or by using more extensive dynamics simulations to
convert the measured 7 into values of a; see equation (32) and
section 2.4.2.1 for more details. In [303], the authors used a
thorough theoretical analysis informed by data from different
values of the angle A to extract a. This study confirmed the
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Figure 8. (a), (b) Upper panels: number of collisions per
rethermalisation, «, versus the angle between the quantization axis é
and the trap axis along which rethermalisation occurs, A. Lower
panels: 3D plots of do /dS2 as a function of the scattering direction

,2,’ for different values of 7. n is the angle between k, set to the
vertical z axis, and the polarisation direction ¢ in the xz-plane. Plots
are for (a) identical bosons and (b) identical fermions. (a) and (b)
Reprinted figure with permission from [301], Copyright (2014) by
the American Physical Society. (c) Comparison between theory and

measurement of « for ultracold dipolar fermions of '*’Er.
(c) Reprinted figure with permission from [302], Copyright (2014)
by the American Physical Society.

anisotropic behaviour as well as provided evidence of hydro-
dynamical effects in the rethermalisation dynamics [356].
These hydrodynamic effects were manifest as modifica-
tions of the mechanical oscillations of the gas after the gas
was kicked out of thermal equilibrium. It was observed that
the large magnetic dipole moment of Dy provides a suffi-
ciently large elastic collision cross section for the gas to lie
near the hydrodynamic collisional regime. These effects were
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predicted in [356], where it was shown that the relaxation
no longer follows a simple exponential in the hydrodynamic
regime when the collisional rate is similar to the trapping fre-
quencies, as observed in [303]. Nevertheless, cross sections
were able to be extracted from the data through close com-
parison to Monte Carlo simulations. Section 2.4.2.1 describes
the scattering length measurements obtained as a result.
Hydrodynamic behaviour arising from the DDI has also been
observed in the expansion aspect ratio of Dy thermal gases
[305]; see also section 4.1.2.2.

3.4.2. Anisotropic scattering halos.  The anisotropy of the
differential cross sections may be directly visualised by
observing the shape of scattering ‘halos’ of atoms from
two gases that have undergone a head-on collision. [165]
describes such an experiment: one creates two dipolar BECs
of 12Dy counter-propagating at momentum =+2hkg using
Bragg diffraction. This energy is much larger than the internal
momentum distribution width of the individual BEC. When
the BECs propagate through one another, atoms scatter away
from the forward and backward directions of the BECs’
motion. A halo rapidly expands from the centre-of-mass posi-
tion, as shown in the data of figure 9. The BECs are sufficiently
dilute that atoms scatter at most one time. The shape of the halo
therefore reveals information about the two-body differential
cross section.

The data visually reveal a novel regime of quantum scat-
tering. Rather than exhibiting halos with shapes dominated
by a single partial wave—e.g. the spherically symmetric
halos from the s-wave scattering of ultracold identical bosons
[357-360]—anisotropic shapes are manifest. This is a con-
sequence of the superposition of a large number of partial
waves due to high-order angular momentum coupling through
the elastic DDI. Moreover, the particular halo shape strongly
depends on 7, as expected from equation (39). The shapes of
the halos in the data agree with Monte Carlo simulations based
on equation (39) and described in [356].

4. Fully polarised repulsive bulk dipolar gases

In this chapter, we will consider dipolar quantum gases of
atoms fully polarised in the lowest Zeeman state. We will
cover only harmonically trapped gases in the absence of a three
dimensional lattice; see section 7 for dipolar lattice systems.
Most of the experimental activity has been focused on dipolar
bosonic gases and in particular dBECs (section 4.1). Neverthe-
less, we will also include the relevant results on dipolar DFGs
(section 4.2) as well as results on dipolar gases in lower dimen-
sions, in particular in 1D (section 7.1).

4.1. Weakly interacting three-dimensional dipolar Bose gases

A majority of the phenomena arising from the DDI that have
been observed in bulk BECs, in particular in the regime
where the overall interactions are effectively repulsive, are
well accounted for by a MF description of the interactions.
After a short description of the MF theory of dipolar Bose
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Figure 9. 2D images of the scattering halos from the collision of
two BECs of '®*Dy that are counter-propagating along the
horizontal direction of the images. Left column are simulations,
while the right column are experimental data. Dipoles are aligned
using a B-field oriented: (a) along the vertical direction, (b) out of
the page, and (c) along the horizontal direction, as indicated by the
arrows. Reproduced from [165]. CC BY 4.0.

gases in section 4.1.1, this section will focus on experimental
observations of related phenomena. These observations can be
understood as hydrodynamic measurements, as they concern
the linear response from the equilibrium state of the quantum
fluid; e.g. its time evolution in a trap or in free space as well
as its elementary collective excitations. These aspects will be
reviewed in sections 4.1.2 and 4.1.3. Beside modifying the
speed of sound and giving it a directional dependence, the
DDI profoundly affects the structure of the elementary excita-
tion spectra of trapped BECs by the interplay of long-range
anisotropic interactions with the trap geometry. In particu-
lar, a dispersion relation showing a local minimum in energy,
i.e. a roton mode, was predicted and observed, as discussed in
section 4.1.3. Furthermore, the DDI influences the stability of
BEC:s in traps. Due to the anisotropy of the DDI, the effective
sign of the MF interaction depends on the density distribution,
which, in turn, is not only determined by the trap geometry
but also by the DDI. This interplay results in a non-trivial sta-
bility diagram as a function of a and of the anisotropy of the
trapping potential, as well as instability behaviours which also
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connects to the underlying modifications of the excitations
spectrum of the BEC mentioned above. This will be reviewed
in section 4.1.4. The stability analysis and related stabilised
states of dipolar Bose gases beyond a MF treatment is the sub-
ject of section 5.

4.1.1. The mean-field description

4.1.1.1. Interaction potential in dilute gases.  As introduced
in section 1.4.1, polarised dipolar bosons in an ultracold dilute
ensemble can be considered to be interacting via a potential of
the form:

_ 4nh*a

3h%agq 1 —3cos?6
r '

Vine (r) o(r)+ (43)

m m

Again, a is the s-wave scattering, while aqq =
pomp? /127h? is the dipolar scattering length. The inter-
particle separation vector is r, with norm r and angle 6 with
respect to the dipole orientation. In the following, we will
assume a polarising magnetic field aligned along the z-axis,
and a harmonic trap with frequencies wy,, .. Unless other-
wise specified, we also consider that the trap has a cylindrical
symmetry along z such that w; = w, = w,,, and

m
Vi = 5 (Wop*+uwiz’). (44)

The trap aspect ratio is:
A =w;/w,. (45)

The validity of equation (43) as an effective pseudo-
potential written as a simple sum of a contact pseudo-potential
g4 (r) (or its more rigorous, regularised version [90]) and the
DDI potential equation (11) has long been debated [9, 16].
This expression for the potential results from the first-order
Born approximation applied to a molecular potential of the
dipole-dipole type dominating at long distance plus a van
der Waals potential dominating at short range [91, 92, 339,
361-363]. While it is a good approximation for weak dipoles
and away from scattering resonances, modifications may be
necessary for systems with large €4q. In particular, the s-wave
scattering length may depend on d [91, 92, 364], requiring a
renormalisation of the dipolar length in equation (43) [340,
365]. In the case of the most magnetic of the atoms, Dy, with
€4a ~ 0.5-2, corrections to aqq were predicted to be of 10% at
temperature of 100 nK and only 2% at 10 nK [366].

4.1.1.2. Mean-field approximation. ~ The MF approximation,
which underlies common approaches to describe the prop-
erties of bulk BECs, consists of replacing the field operator
by its mean value, v (r,f). The approximation assumes that
the BEC mode is macroscopically occupied [9, 87-89]. This
effectively ignores fluctuations of the bosonic field around
its mean value. In the absence of the DDI, the corrections
to this approximation scale as Vna3. In the presence of the
DDI, one naively expects the MF approximation to be valid
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when vna?, \/nag3 < 1. A proper treatment of fluctuations
around MF values, outlined in section 5, leads to a more
restrictive condition: vna? < 1,e4q < 1. Note that the length
aqq 1s defined such that a = aqq (€49 = 1) marks the limit of the
mechanical stability of a homogeneous isotropic dBEC, and
other authors sometimes call 3aqq the dipolar length (which
arises from a consideration of the two-body problem [339]);
see section 1.3.4.

Considering a gas of N atoms interacting via equation (43),
the MF approximation results (at zero temperature) in a non-
local GPE given in equation (9) and reprinted here:

|

ot
with g=4nh?a/m and Du(r) = [dr'Us(r’ —r)|¢(r’)|;
see also equation (10).
The corresponding energy functional is:

h2
— V24V,
2m

ih——(r,1) = (r) + gl * + Daalr) | ¥, (46)

2
Bl = [ |3 V0P + Vel

+§|w|4 + %\qu)dd(r) dr, (47
which can be minimised to obtain the equilibrium ground state
of the BEC [13, 14, 16, 367]. In these equations, the DDI
yields a nonlocal contribution ®g44(r), whose sign depends on
the shape of the density distribution. We note that various ana-
lyses demonstrated the applicability of the nonlocal GPE in
accurately describing the properties of trapped dipolar gases
[365, 368].

4.1.2. Magnetostriction

4.1.2.1. Magnetostriction of dBECs. ~ When placed in a cyl-
indrical harmonic trap, a nondipolar gas (49 = 0) assumes the
geometry of the trap. A dipolar system behaves differently
because of the presence of ®yq in equation (9). Specifically,
the dipole term ®q4(r) has a saddle-shape, tending to elongate
the distribution along the magnetic field. That is, to minimise
its energy, the dBEC elongates along the dipolar axis due to the
attractive part of the DDI. This effect is called magnetostric-
tion and is of course not unique to quantum gases as it has been
known since Joule discovered the effect in iron [369]. Note that
the magneto- or electro-strictive effects deform a system solely
due to the presence of a homogeneous field which breaks rota-
tional symmetry. The forces responsible are due only to the
interactions between the particles because the external field
has no gradient.

o Application of the Thomas-Fermi approximation

Rather than numerically solving equation (9), magnetostric-
tion can be analysed by the use of the Thomas-Fermi (TF)
approximation, valid for high atom numbers and sufficiently
large total interaction strength [9]. This allows one to neg-
lect the kinetic energy term in equation (9). For €44 =0 (i.e. a
nondipolar BEC), one can easily show that the density of a
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BEC acquires an inverted parabolic shape with a so-called TF
radius that scales as R; o« 1/w;, i =x,y,z [9]. In the dipolar
case, [370, 371] showed that a dBEC retains the parabolic
shape in this (TF) limit. However, its aspect ratio:

k=R,/R., (48)
defined by the ratio of the TF radii perpendicular (R,) to the
radius along (R;) the dipole direction, no longer reflects the
aspect ratio of the trap. This is due to the contribution of @44
to the mean energy in equation (47), which one can calculate
analytically:

n()N

4
Eq=—zcwg deip(/i), 49)

7
where n is the density at the trap centre. The function fyi, (k)
encompasses the anisotropy of the interaction energy, it is a
decreasing function of x [372]. The complete expression is
[373]:

1+ 2k%  3kZarctanhv/'1 — K2

fdip("f) - (1— 52)3/2

— 50)

Note that an angular integration of the DDI over an iso-
tropic distribution is zero, leading to fuip(1) =0. fuip is
bounded by two limits: fully collinear dipoles (attractive DDI)
lim,;_,0 faip = 1, while side-by-side dipoles (repulsive DDI)
yield lim,_, faip = —2. Thus, one readily sees that Eyq is
reduced by lowering «. In the TF approximation, minimising
E leads to a transcendental equation for « [92, 371, 373]:

_ 1/2
( 14 2e4q — 738(1{1@',52(@ ) /
K ) .

The solution of this equation for a given \ thus gives
the degree of magnetostriction. A solution exists for any A
provided that €49 < 1. The absence of a MF solution will be
discussed at the end of this section, and for now we assume
there exists one.

We note that assuming a 3D Gaussian shape for the dBEC
is another common approximation [91, 92, 96, 371, 374].
This approximation will be later reviewed in section 4.1.4.1.
Interestingly, and despite the difference in the approxima-
tions, such a Gaussian variational ansatz for 1) yields the same
equation as equation (51) for the aspect ratio. We note that
both the TF and the Gaussian approximations can describe a
regular BEC wavefunction with only maximal density at the
trap centre. They fail in describing more complex phenomena
that can occur in dBECs, e.g. when operating close to the MF
instability threshold; see sections 4.1.4.3 and 5.4. In this para-
graph, we focus on the shape of stable dBECs.

(51

o In-situ measurements

We now describe the distortion of the gas shape inside the trap.
Quantitative in-situ measurements of magnetostriction have
only recently been possible: the first in-situ images of dipolar
BECs were reported in [184] and in-sifu magnetostriction
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Figure 10. In situ imaging of magnetostriction of a '®*Dy dBEC.
The atoms are held in a pancake-shaped trap, nearly isotropic in the
plane. The field is out of plane in the left image, and in-plane for the
right image, while the trap is kept unchanged.

images first presented in [375]. An example is shown in
figure 10.

e Magnetostriction in the TOF dynamics of BECs
Observing the (hydrodynamic) expansion of the gas trap
release is a common way to reveal BEC physics [376, 377],
and in particular the impact of interactions on quantum gases.
The hydrodynamic equations for the expansion of a (nondi-
polar) BEC were first presented in [378], showing inver-
sion of ellipticity during TOF. Solutions to the hydrodynamic
equations for dipolar gases can also be found [370, 371, 379].
The effect of the DDI is the same as in trap: energetics favour a
distortion in the expansion that aligns the dipoles head-to-tail.

The first observation of magnetostriction in a gas was
observed in the hydrodynamic expansion of a >Cr BEC
[380]. This was manifest as a dependence of the inver-
sion of ellipticity on the magnetic field direction. Compar-
ing the experimental dynamics with solutions to the hydro-
dynamic equations, a value for 44 for 2Cr away from FRs
was extracted [381]. The value agrees with most precise val-
ues of the background scattering length a,, obtained more
recently [161]; see section 2.4. Using a FR to lower a—
and thus to enhance dipolar effects into the 44 > 1 regime—
magnetostriction in situ and in TOF was strong enough so that
a complete suppression of ellipticity inversion was observed
[382]. The variation of the aspect ratio of an expanding cloud
with 44 can be seen in figure 11.

4.1.2.2. Magnetostriction and TOF dynamics of ultracold,
non-condensed gases.  Observation of magnetostriction in
gases requires low temperatures and high densities. Other-
wise, thermal energies are orders-of-magnitude larger than
the DDI. As mentioned above, the use of dBECs enabled the
observation of magnetostriction both in TOF and in situ. Mag-
netostriction effects could also be observed in ultracold, but
non-degenerate thermal gases of sufficiently strong dipolar
atoms.

The dimensionless parameter relevant for DDI corrections
to the ideal gas law is obtained is obtained by comparing the
mean dipolar energy to the mean kinetic energy: n = Egip/Ex.
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Figure 11. Aspect ratio of an expanding >Cr BEC, measured 2 ms
after its release from a trap, as a function of e4q4. €44 Was controlled
using a a FR centred about By. Blue (red) dots: data with B < By
(B > By). Dashed line: background e44. Solid line: prediction from
equation (12) without adjustable parameters. Shaded area:
uncertainties in w, ;. Inset, same data as a function of B — By.
Reproduced from [382], with permission from Springer Nature.

For a non-degenerate gas, Egip ~ S%d*n and Ey ~ kgT, such
that 7 (n)\?h) X (kmaaa), with kg, = 27/ Ay = /mkgT /i the
thermal wavenumber, and Ay, the thermal wavelength. To max-
imise 7 in a thermal gas, we may choose Dy, which provides a
agq = 131 ap; see section 2). At typical experimental densities
for a gas with a temperature just above its BEC T, n remains
< 1. Thus, at best, the DDI only weakly modifies the TOF
expansion dynamics. Nevertheless, DDI effects on time-of
flight dynamics have been observed, as we now discuss.

Tang et al [305] theoretically and experimentally studied
the anisotropic expansion of a thermal dipolar Bose gases
of %Dy and '%’Dy just above their degeneracy temperature.
Each gas, after TOF expansion, exhibits an aspect ratio that
depends on the polarisation angle of the dipoles, as had already
been noted in dBECs [16]; see figure 12. The DDI strength of
Dy is sufficient to cause the magnetostriction of even a dilute
thermal gas. To predict the experimental aspect ratios versus
temperature and dipolar angle, the authors developed a theory
of the expansion that accounts for the Hartree—Fock MF inter-
actions, Bose-enhanced scattering, and hydrodynamic effects
that partially cross-dimensionally rethermalise the gas during
the expansion. By doing so, the authors were able to quantitat-
ively match the theory to the data. The theory fits provided
a method to extract the gas temperature and is a relatively
simple method for determining the scattering length of the
gas, even near a FR; see section 2.4.2.1 for the results of the
a measurements using this technique, which are compatible
with previous measurements. Moreover, the momentum distri-
bution deformation scales with the ratio n = (nA3) X (knaaa),
as expected, and arises primarily from the two-body collisions
and the direct Hartree contribution to the MF energy.

A similar effect arises in DFGs, although with a few fun-
damental differences. The kinetic energy is dominated by the
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Figure 12. The anisotropic aspect ratio of dipolar thermal gases
after 16 ms of TOF. Aspect ratio for (a) 162Dy and (b) 164Dy. Red
(blue) is for magnetic field along Z and y. The solid (dashed) curves
are the full (partial, MF-only) theory developed in [305]. The
Bose-condensation temperature is marked by the vertical grey line.
Reprinted figure with permission from [305], Copyright (2016) by
the American Physical Society.

Fermi energy, so the distortion in momentum space is smal-
ler. This Fermi surface deformation stems from the exchange
contribution to the mean interaction energy, which does not
vanish in the degenerate Fermi many-body state due to the
Pauli exclusion principle; see section 1.4.2 and the discussion
in section 4.2.

4.1.3. Elementary excitations of dBECs. In the previous
section, we were concerned with the influence of the DDI
at equilibrium: i.e. the magnetostrictive effect on the gas
wavefunction in real space, and its consequences on the
free-space expansion dynamics, which allows observations of
momentum-space magnetostriction. In contrast, elementary
excitations around equilibrium provide a window into dynam-
ical behaviour of the dipolar quantum gases. Due to the sensit-
ivity of spectroscopic measurements, experimental studies of
DDI effects on elementary excitations even at low €44 are pos-
sible. Besides, stringent modifications of the excitation spec-
trum at 49 ~ 1 were also evidenced.

4.1.3.1. Elementary excitations in a (homogeneous) dBEC:
from phonons to free-particles

o Continuous Bogoliubov spectrum

Elementary excitations of BECs were introduced in
section 1.4.1.3 in the uniform BEC case. In presence of DDI,
the well-known Bogoliubov spectrum, obtained by linearising
the GPE around the ground state, with its linear phonon branch
followed by the quadratic free-particle dependence, is modi-
fied. By combining equations (8) and (16), the spectrum of a
uniform 3D dBEC of density n is [374]:

h2k?
2m (

h2k?

2m

hw(k)

+2gn (14 e4q4(3cos? 6, — 1))),

(52)
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Figure 13. Bragg excitation spectra of a >>Cr BEC, with the
magnetic field in two perpendicular directions. Lines are fit to the
data. Reprinted figure with permission from [388], Copyright
(2012) by the American Physical Society.

where 6, is the angle between the direction of excitation
propagation and the dipole orientation. The sound velo-
city for BECs with only contact interactions (gqq =0) is
co =+/gn/m and acquires an angular dependence in pres-
ence of the DDI, ¢(6x) = co \/l + e4a(3cos? 6, — 1). Excita-
tions propagating along the dipoles’ direction (; = 0) have
the highest sound velocity (i.e. they are stiff modes), while
those propagating in the perpendicular plane (6; = 7/2) have
the lowest velocity (i.e. they are softer modes). This aniso-
tropy of the dispersion relation is one of the main feature of
dBECs with respect to collective excitations and has import-
ant physical consequences; namely, the anisotropic super-
fluid critical velocity (see below) and a mechanical instability
with anisotropic nature manifest for gases with £49 > 1; see
section 4.1.4.

e Bragg spectroscopy

Using the standard method of two-photon Bragg spectro-
scopy (see, e.g. [383—-387]) on a dBEC of 32Cr, Bismut et al
[388] probed the dispersion relation of such a trapped dBEC
away from FRs. In practice, the finite size of the trapped
samples sets a lower limit on the momentum at which one can
probe and compare against equation (52) (which holds in the
homogeneous case). This limit comes from the fact that the
BEC smallest size (Rtpmin) must be larger than the excitation
wavelength: k Rtpmin > 1. In this limit, the LDA can be used,
allowing one to take into account the BEC’s inhomogeneity.
Bismut et al observed a Bragg dispersion peak that depends
on the relative orientation between the Bragg momentum
and the magnetic field angle, in very good agreement with
theory; see figure 13. At low momentum, a departure from
the homogeneous expectation was observed. Numerical sim-
ulations taking finite-size effects into account reproduce
the evolution of the measured dispersion relation and its
anisotropy.
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o Critical superfluid velocity measurement

The DDI effect on the dBEC’s excitation spectrum implies
other changes to the BEC’s physical behaviour. A prime
example lies in the change to the superfluid critical velo-
city. The famous Landau’s criterion relates the critical velo-
city for an impurity moving in the direction v in an (infin-
ite and uniform) superfluid to its dispersion relation: v,
rr}(ln(;";) [100, 389]. In the homogeneous case discussed
above, equation (52) implies that the critical velocity becomes
anisotropic in a dBEC, depending on whether the excitation
is applied along or perpendicular to the dipole orientation
[389, 390]. We note that the critical velocity does not gen-
erally match the speed of sound, even in the homogeneous
case. This is because the dissipating excitations can occur in a
different direction than the impurity’s motion [389]. The crit-
ical velocity is thus systematically smaller than the speed of
sound in the direction of motion. For anisotropic confinement,
as discussed in section 4.1.3.3, the critical velocity should also
be affected by the existence of low-energy high-momentum
modes, such as the roton mode [390, 391].

Superfluid velocity measurements were performed on a
122Dy dBEC using a local light defect driven linearly along
one axis [375]. These showed that the anisotropy of the critical
velocity as well as of the heating rate above the critical velocity
are in excellent agreement with dynamical simulations based
on the GPE; see figure 14. Large corrections compared to the
homogeneous predictions are observed and mainly attributed
to inhomogeneous density effects, as corroborated by numer-
ical simulations of the GPE.

4.1.3.2. Low-lying collective modes of trapped dBECs and
oscillation measurements.  For a trapped gas, if one lowers
the excitation momentum down to the regime where the cor-
responding wavelength is on the order of the cloud size, then
one reaches the regime of low-lying excitations where the
spectrum is discrete and momentum is not a good quantum
number. The low-lying modes are typically surface modes,
implying an (out-of-phase) oscillation of radii in different dir-
ections. These modes typically have a compressional char-
acter, yielding a density (and thus interaction) dependence.
Signatures of the DDI in these systems have been theoretic-
ally studied [92, 96, 370, 392, 393]. MF methods to extract
the collective modes nature and frequency rely on expanding
the energy functional equation (47), or corresponding hydro-
dynamic equations, around the stationary solution. This can
be done semi-analytically by either applying the TF approx-
imation or using the Gaussian ansatz; see sections 4.1.2
and 4.1.4.1.

Experimentally, Bismut et al [394] studied the influence
of the DDI on such modes with a 3>Cr BEC. They investig-
ated the second-lowest-lying mode, a quadrupole mode in a
non-axisymmetric trap. The experimental results demonstrate
that the collective mode frequency is dependent on the relative
orientation of the dipoles with the trap axes, and that the fre-
quency shift is dependent on the trap geometry, see figure 15.
The experiment is in good agreement with a TF approximation
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Figure 14. Temperature of the '’ Dy dBEC after applying a stirring
protocol. The stirring beam is moved along x (red squares) or y
(blue circles). The dipoles are polarised along x. The trap is
cylindrically symmetric in x and either (c) elongated or (b) made
narrow in this direction; see insets with example of in situ images. A
piecewise linear fit (dashed lines) quantifies the anisotropy of the
critical velocities (arrows) with respect to the dipole orientation. For
both trap geometries, the velocity, v , for a perpendicular excitation
is small than for a parallel one, v||, with v, = 0.16(2) mms ™"
(0.12(3) mms™~") and v/ = 0.36(3) mms ™" (0.26(4) mms~") in
(b) (c). Numerical simulations of the GPE (solid lines) show
excellent agreement with the experiment. Reprinted figure with
permission from [375], Copyright (2018) by the American Physical
Society.
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Figure 15. Time evolution of the aspect ratio of a dBEC oscillating
due to the excitation of a low-lying surface collective mode (taken
after TOF expansion). The two different colours show the time
evolution for two different angles of the B field, showing the
dependence of the frequency of the collective modes on the dipoles
direction due to the DDI. Reprinted figure with permission from
[394], Copyright (2010) by the American Physical Society.

theory, which neglects the kinetic energy of the atoms. When
lowering the atom number below a few thousand, the fre-
quency shift is clearly reduced, demonstrating the importance
of quantum pressure for very small samples. Quantum pres-
sure can be taken into account by either performing full numer-
ical simulations of the GPE, or by using a Gaussian variational
ansatz for the BEC wavefunction.

4.1.3.3. Spectrum of elementary excitations in trapped dBEC,
roton mode.  As highlighted in equation (16), the DDI con-
tributes to the continuous excitation spectrum via an effective
coupling strength V44(k), which adds to the constant contact
contribution g. As observed in equation (52), in the 3D homo-
geneous case, the DDI contribution, simply given by its Four-
ier transform (equation (8)), yields an orientation-dependence,
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but no k-norm dependence. When combining the DDI with an
anisotropic confinement, even more striking behaviours of the
dBEC’s excitation spectrum arise. Here, a k-norm dependence
may arise from the interplay of the DDI with the trap’s natural
length scales. This k dependence yields qualitative differences
in the dispersion relation compared to that of a non-dipolar
BEC anclgf auniform dBEC. In this section, we keep the nota-
tion of Vgq(k) for the DDI effective coupling strength, which
determines the excitation dispersion relation, even if the gas
in non-uniform and this differs from the Fourier transform of
equation (8).

A particularly interesting case is when the dispersion rela-
tion e(k) of a dBEC becomes non-monotonic, presenting a
local maximum (maxon) followed by a local minimum (roton).
Such a qualitative change in the dispersion relation underlies
important new physical behaviour. To get a first insight into
such changes, it is interesting to highlight that such disper-
sion relation resembles the celebrated dispersion relation of
superfluid helium [100-102]. Here, roton excitation were first
speculated to explain the exotic macroscopic properties of this
superfluid [100, 101, 395], long before their observation [102].
Thanks to its low energy, the roton excitation strongly influ-
ences the response of the superfluid to small excitations. Fur-
thermore, because of its large momentum, the roton underlies
the tendency of the fluid to crystallise (at the wavelength cor-
responding to its inverse momentum) [396—-398] (although one
should note that the phase transition to solid helium is not due
to roton softening).

e Roton excitation spectrum in anisotropic semi-infinite
dBECs

In 2003, a dispersion relation presented a roton minimum was
predicted to occur in anisotropically trapped weakly interact-
ing dipolar gases, first in the context of light-induced DDI by
O’Dell et al [97] and, shortly after, in that of magnetic or
electric dipolar system by Santos et al [98]. These seminal
works consider semi-infinite trapping geometries, i.e. infin-
ite along one (w; = 0) [97] or two (w, = 0) [98] directions of
space, and harmonically confined along the others. This treat-
ment allows to account for anisotropy effects while facilitating
theoretical treatment, yielding semi-analytical expressions of
Vaa(k) within the TF approximation, and providing an intuit-
ive picture of the effect. .
The occurrence of a roton minimum arises from Vyq(k)
becoming attractive at large k. In the quasi-infinite geometries
of [97, 98], the confinement acts to limit the attractive contri-
bution of the DDI: the attraction dominates over the repuls-
ive contribution only if the momenta (along an unconfined
direction) have a norm larger than the inverse characteristic
confinement length /. In this way, for excitations along the
unconfined directions, k < 1/¢, yields Vgq(k) > 0, while, for
k > 1/0,, Vaa(k) < 0. Therefore, the DDI stiffens the disper-
sion relation in the phononic regime while it bends it down for
large k. Because of the additional contribution of kinetic term
h " which ultimately dominates at very large k, the effect of

Vdd (k) <0 is the strongest at k ~ 1/¢, and, for weak enough



Rep. Prog. Phys. 86 (2023) 026401

Review

s-wave coupling strength g, a minimum arises at keop ~ 1/£;,
matching a roton mode. Here the roton wavelength is typ-
ically set by the confinement along the direction of attract-
ive DDI. Furthermore, the roton energy A can be lowered by
increasing the density or increasing £43. When A =0, [98]
finds kyop = V2 /¢, independent of the density and the inter-
action parameters g, £44.

e Roton excitation spectrum in anisotropic fully trapped
dBECs

Numerous subsequent theoretical works describe the roton
in dipolar gases confined in finite geometries (equation (44)
with A > 1). They study how the roton spectrum of the infin-
itely elongated geometries described above survive in the fully
trapped case and how the steady state and dynamical beha-
viour of dBECs are affected [99, 112-114, 391, 399-409]. In
the case where the trap is tightly confining along the dipoles
and sufficiently anisotropic (e.g. A > 1), a roton-like spec-
trum arises for large enough £49. The relevant range of c4q
depends on the exact trap geometry. While, in the inhomo-
geneous case, the momentum is not longer a good quantum
number, the rotonic properties of the spectrum are most dir-
ectly revealed by the behaviour of the dynamic structure
factor. This factor S(k,w) conveniently describes the system’s
response to a Bragg excitation at momentum k and frequency
w [400]. Furthermore, in harmonically trapped geometries,
the elementary mode contributing to the roton minimum in
the dynamic structure factor has an amplitude that vanishes
away from the dBEC centre [401]. This confinement effect can
be understood, within the LDA, as the roton energy decreas-
ing with increasing density. This translates into a finger-like
feature in the (discrete) dispersion relation [406]. Other sig-
natures of the existence of the roton mode in finite dBECs
include anomalously large density fluctuations at the roton
wavelength in an equilibrium gas [402, 405, 407], strong cor-
relation emerging from an interaction quench [409], and pecu-
liar structures in the collapse dynamics [113, 114]; see also
section 4.1.4.3.

When the trap anisotropy is reduced (e.g. A > 1)and R =
R., the existence of a roton feature, occurring at large k
compared to 1/R, , becomes progressively lost. Indeed, the
argument of a finite k scale for the activation of the attrac-
tions starts to break down. Yet the interplay between DDI
and geometry persists, now including also finite-size effects.
This yields other interesting features in the excitation spec-
trum, in particular the so-called angular roton mode that has
a momentum k ~ 1/R, , but a non-zero angular momentum
[112, 410]; see also discussion in section 4.1.4.3. Finally, we
note that while most of the theoretical work has focused on cyl-
indrically symmetric geometries about the dipole axis, exten-
sions to transversely anisotropic geometries have also been
discussed [399].

e Experimental measurements of the roton spectrum

The roton mode has remained elusive in Cr experiments due
to the weak dipolar character of this species. That weakness
makes the a-range of existence of a potential roton minimum
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very narrow, as well introduces strong three-body losses when
tuning within this small a—see also section 5. This leads to
a fast change of the BEC’s properties, including its excita-
tion spectrum. The roton mode was experimentally observed
in a 'Er BEC [311, 312] using a cigar-shaped trap geo-
metry with the dipoles aligned along a tightly confining direc-
tion. This geometry, simplifying experimental observations,
differs from most of the early theoretical works on roton
excitations, which rely on cylindrical symmetry around the
dipole axis. The observation of [311], relying on instability
dynamics, will be described in section 4.1.4.3. In [312], Petter
et al [312] reported on roton spectrum measurements based
on Bragg spectroscopy, similar to section 4.1.3.1. The scat-
tering length was tuned close to instability and the excited
momentum, along the trap axis, varied from k < 1/¢; to k ~
2/¢,, thus probing the full phonon-maxon-roton dispersion
relation; see figure 16(a). When increasing €44, a preferen-
tial softening of e(k) at large k is observed, finally forming
a minimum at k = ko ~ 1.3/£,; see figure 16(a). The min-
imum is observed only in a narrow range of scattering lengths
and the roton gap shows a fast decrease with £49 towards
instability (e(k;o) = 0), see figure 16(b). The Bragg measure-
ments also proved, through the increase of the Bragg response,
the enhancement of density-density correlations at ko as the
roton instability is approached, indicative of the system tend-
ency to crystallise. More recently, experiments performed on
Dy BECs revealed roton excitations by a direct analysis of
the in-situ density fluctuations [411], following early theor-
etical studies [402, 405, 407]. Fluctuation analysis provides
access to the static structure factor. It also allowed to identify
the two degenerate roton modes, which correspond to sym-
metric and antisymmetric density patterns to the trap centre.
The study of roton excitations via the induced density fluctu-
ations was extended beyond the cigar-shaped case, to oblate
systems, in an independent set of experiments [412]. Here
the distinct softenings of several radial and angular rotons
were revealed. As introduced in the previous paragraph, radial
rotons correspond to the standard situation of a mode of large
radial momentum (k) and radial symmetry, angular rotons dis-
tinctly have low (k) but large angular momentum and show
azimuthal patterns [406, 410] and reveal as such in the density
fluctuations.

4.14. Mean-field stability of dBECs.  Beyond the properties
of the ground state and its collective excitations in a stable
regime, the DDI also impacts the very stability of the state,
in particular making it geometry dependent. In this section,
we review in detail the effect of the DDI on the stability
of the quantum gases: first, how the DDI makes stability
depends on the trap geometry; second, how it affects the sta-
bility of a cloud via long-range interactions between neigh-
bouring clouds; and finally how the DDI introduces, bey-
ond the global stability condition, a distinct (local) collapse
mechanism in some special geometries. We will see how the
later case relates to the softening of excited modes distinct
from the lowest lying ones, arising from the interplay of DDI
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Figure 16. Roton excitation spectrum measured with a '*Er dBEC
of cigar shape (cigar along y, dipoles along z). (a) Measured
dispersion relation (dots) compared to predicted response for the
Bragg measurement (colorcode) at a = 52.5ay [theory at 51.6a0].
(b) Measured €(krot) vs. scattering length (circles) and
corresponding theory prediction. The shadings show the
calculations over the prediction interval of a. The dashed line shows
the power-law fit to the experiment. Inset: zoom-in around the
instability threshold comparing €(krot) (circles) to €(kmax ) of the
maxon [local maximum)] (triangles), respectively with the
power-law fit and a guide to the eye (dashed lines). The region
where 0 < €(krot) < €(kmax) is highlighted with a white background.
Reprinted figure with permission from [312], Copyright (2019) by
the American Physical Society.

and either anisotropic geometries or, additionally, finite-size
effects.

4.14.1. Global mechanical stability for a single BEC.  Three-
dimensional, homogeneous BECs under contact interactions
are mechanically stable for positive compressibility [413]

X = Wlwz >0 (where ¢y is the speed of sound; see
0

section 4.1.3.1), they are thus unstable for a <0 [9, 109].
Finite-sized [414] and harmonically trapped [3, 105] BECs can
be stabilised by quantum pressure for small negative scatter-
ing length. As dBECs experience competing interactions, their
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mechanical stability criterion is more complex. Even at pos-
itive scattering length, this mechanical instability occurs for
e4qa = 1 as the sound velocity perpendicular to the dipole ori-
entation then cancels, Cz‘gk:ﬂ 2 = 0; see section 4.1.3. How-
ever, this holds for only infinite, homogeneous, and isotropic
BECs. Because of the anisotropic character of the DDI, the
anisotropy of real samples must be considered to understand
their stability.

o Stability within the TF approximation
Global mechanical collapse can be alternatively understood
from an energy argument. The energy density of MF interac-
tions, when attractive, scales like Eyp ~ —n? and is thus min-
imised for infinite density. Using the TF approximation and
neglecting the kinetic energy contribution, Eyp < 0 leads to a
singularity of the ground state density, thus giving an instabil-
ity. From equation (12), the sign of the MF dipolar energy of a
cylindrical dBEC depends on the cloud aspect ratio «. Taking
into account both interactions, one can show that the total MF
interaction energy scales like:
Enmg ~ gnoN(1 — eqq fuip(K))- (53)
Imposing an attractive MF interaction, Eyr < 0, leads to
the instability condition a < agqfaip(x). Solving for k(\)
through (48) leads to a stability diagram as a function of a and
A. Intuitively, for very prolate traps, A < 1 and the dipoles are
aligned head-to-tails x < 1 while the DDI is mostly attract-
ive (faip(k) =~ 1). Thus, a must surpass aqq for stability. For
the opposite case of very oblate traps (A > 1), dipoles repel
each other twice more strongly fsp(x) ~ —2, and a must be
large and negative to reach an effective attractive MF energy,
a < —2agqq. This simple reasoning that considers only the MF
interaction leads to a prediction that well describes experi-
mental observations [415]; see figure 17(a).

e The Gaussian ansatz for a BEC near collapse

However, near collapse, kinetic energy effects also play a role,
especially for low atom numbers. One must depart from the TF
approximation, keeping all terms in equation (47). The vari-
ational Gaussian ansatz provides a semi-analytical approach:

N DD S %
V) = —jise ’

(54)

inserted into equation (47), the energy is minimised with
respect to the variational parameters oy, ., describing the BEC
sizes along the trap axes x,y,z. Here, & = (0,0,0)'/3. Once
the integral is carried out, the different contributions read:

K2 1
Ex=N_— Z pol (55)
for the kinetic energy,
m
Euap :szwfaf, (56)
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Figure 17. Stability diagram of a 2Cr dBEC in a cylindrical trap of
aspect ratio A versus a. (a) Taken from [415]. The thin grey line is
the result of the condition a < agqq fdip(/-c), while the green line is the
result of the Gaussian ansatz analysis. The red line is for eq¢ = 0. In
the large N limit this diagram is universal, i.e. it also holds for
electric dipoles. (b) Same data as (a), now compared to either a
Gaussian ansatz (dashed line) or a numerical solution, minimising
equation (12) (solid line). Reprinted figure with permission from
[410], Copyright (2009) by the American Physical Society.

for the external trapping energy, and the MF interaction energy
reads:

Evie = N> =5 (1 = caa fap (s y) (57)

2(2m)3/253 P o

where we allowed non-axisymmetric traps. The expression for
the generalised fgi, function in terms of the two aspect ratios
Kyy = Oy,y/0; Was first worked out in [416]. One can then min-
imise the total energy E = Ey + E,p + Emr to find the ground-
state size oy, .. In general, for eq4¢ > 1, there is always a global
singularity with k, , < 1 and E — —o0, but a local metastable
minimum exists as well and sets the stability condition. While
they coincide for very large N, at finite N the stability diagram
from the Gaussian ansatz differs from the one derived using
a TF approximation, see, e.g. figure 17(a). At low trap aspect
ratios A < 1, the kinetic energy acts to stabilise the gas against
collapse, as in the contact case. However, for A\ > 1 the effect
is opposite, kinetic energy increases the smallest size, which
adds a little attraction via dipolar effects and destabilises the
gas.
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o First measurements of the instability threshold

The instability threshold was studied in >Cr BECs of about
25 000 atoms in tunable traps [415]: When quenching a down-
ward using a magnetic FR, the authors observed an abrupt and
quick disappearance below a critical value, a., of the BEC
peak in TOF images. The experimental values of a.; as a func-
tion of A\ were found to agree well with the Gaussian ansatz
predictions; see figure 17. For the first time, the stability and
thus the very existence of a BEC was ensured solely by dipolar
interactions, and a purely dipolar BEC with a = 0 was obtained
[415].

4.14.2. Stability of dBEC assemblies.  Consider a stack
of pancake-shaped BECs, realised with a one-dimensional
optical lattice. The DDI being long-range, the total energy
of a given layer contains contributions from interactions
with neighbouring layers. Since the stability of the system
is ensured by the existence of an energy minimum, nearest-
neighbour interaction (NNI) can modify the stability diagram.
Indeed, the first observation of nearest-neighbour dipolar
effects was reported in [417] via dephasing of Bloch oscilla-
tions in a potassium optical lattice interferometer. Fattori et al
then calculated the inter-site interaction using a Gaussian
ansatz for an individual layer. The contribution is attractive if
the dipoles are aligned with the lattice direction. This negative
contribution modifies the energy landscape and can suppress
the local minimum, destabilising the gas. This can be under-
stood in the following way: the neighbouring layers attract
the atoms resulting in an effective repulsive potential along
this axis. The pull is stronger at the radial centre where the
neighbouring density is highest leading to a stronger effect-
ive radial trapping. The total effect is destabilising the BEC.
The instability threshold in scattering length is thus higher.
Miiller et al [418] have observed this effect with a >Cr gas
in a one-dimensional optical lattice, obtained with a retro-
reflected 1064 nm beam. The difference in critical scattering
length with respect to a theory neglecting the neighbouring
layers was as high as 8 ay, in agreement with expectations; see
figure 18.

All arguments given above consider the stability of a dBEC
at equilibrium inside a trapping potential (harmonic or optical
lattice). The in-situ density distribution determines the MF
stability. However, even for a stable in-trap density, it is
possible that the release from an optical lattice into free-
space modifies the distribution in a way that makes it mostly
attractive and then induces collapse. This deconfinement-
induced collapse has been observed experimentally in [420].
Experiments were performed in an optical-lattice along the
dipoles axis. They showed that, for large lattice depths, no
losses were observable in-trap. However the release from
the trap leads to a collapse visible in the d-wave shape of
the density distribution, see also section 5. Simulations of
the GPE confirmed that no atomic losses were expected in
trap, but were induced by the deconfinement and following
collapse.
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Figure 18. Stability diagram of a dBEC in an optical lattice as a
function of lattice depth and scattering length. The experimental
data is compared with theory including (excluding) the influence of
neighbouring traps as full (dot-dashed) lines. Red lines correspond
to a full numerical solution of the GPE (equation (9)), while blue
lines correspond to a Gaussian variational ansatz for the on-site
density distribution [419]. Reproduced with permission from S.
Miiller, PhD thesis, Stuttgart University.

4.1.4.3. Modulational instabilities

o Modulational instabilities predicted from DDI

The stability criterion developed above, based on the existence
of a local minimum in the energy landscape as a function of
the BEC widths (o ,,.), is only partial. It allows only shape-
conserving perturbations to the BEC profile. However, other
perturbations containing local density modulations are not
taken into account by this criterion. The existence of instabil-
ities driven by higher lying modes in dBECs was first noted
in the seminal paper [98] predicting a roton-type dispersion
relation in anisotropic semi-infinite dBECs, see section 4.1.3.3
and [99]. Tuning the parameters of the dBEC (i.e. its scattering
length and trapping geometry) can lead to a softening of this
roton minimum (w reaching zero and becoming imaginary).
Then, the dBEC becomes unstable and, in the early dynamics,
its population gets transferred to the roton mode leading to
the onset of density waves and, hence, a type of modulational
instability.

The combined effect of axial trapping and DDI is also
present in finite-size dBECs, as long as a tighter confinement is
applied along the dipoles; see also section 4.1.3.3. This mech-
anism was also shown to favour local density modulations in
the equilibrium profile of the dBEC itself, i.e. as a result of
finite-size effects [112, 421, 422]. In this case, an instability
can be triggered when €44 > 1. It differs from a global instabil-
ity in that several local attractors gather the atomic density
leading to an ensemble of local collapses [113, 114, 410]. This
kind of instability can be seen as the softening (w? < 0) of a
mode that is not one of the lowest-lying surface and monopole
modes: one quantum number is not the lowest possible one,
for instance the momentum (k) or the angular momentum m
[406, 410]. Yet, due to confinement, this mode still belongs to
the discrete part of the spectrum where the wavenumber is not
a good quantum number: (k) x R} < 1 where R is the typical
size of the BEC in the plane perpendicular to the magnetic field
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and (k) is calculated for the given mode. In particular, in nar-
row regions of the (A, N)-space, BECs with biconcave shapes
have been predicted by minimising the energy functional of
the GPE (i.e. in the MF regime) and their collapse are driven
by angular roton [114, 410, 412, 421, 422]. The softening of
this intermediate-low-lying modes also yields a type of mod-
ulational instability.

We note that, in ultracold atom experiments, modulational
types of instability were first predicted for contact interact-
ing gases [423] and investigated in this case [424, 425]. These
modulational instabilities are in fact of a different nature to the
one described above for dBECs. Indeed, in the contact case,
the lowest lying mode is always soft at the instability (ima-
ginary w). The modulational instability here arises when other
modes are also unstable and have a larger growth rate. The
mode with the highest growth rate has a finite k, which is then
favoured rather than global collapse [426, 427].

o Experimental evidence for local collapse

In dBECs, the role played by local collapse was first
noted by an extensive theoretical analysis of the data from
[415] by Wilson et al [410], going beyond the Gaussian
ansatz (equations (54)—(57)) and solving exactly the GPE
(equation (9)). Their predictions, showing a better agreement
with the measured stability threshold at large trap anisotropy
with A = 3 (figure 17(b)), implies the occurrence of local col-
lapse. Yet the instability mechanism was not experimentally
resolvable and later studies of the collapse dynamics also
let modulational instabilities remain elusive, see section 5.1
[428].

More recently, the impact of such instabilities was experi-
mentally studied on finite-size anisotropically-trapped dBECs
of %Dy, either in pancake traps [184] or in cigar shaped
ones [429, 430] with a tight confinement along the dipoles.
Here, after quenching a down, remarkable long-lived in-situ
density structures were observed. The observed density struc-
tures have been attributed to the occurrence of a modulational
instability following the quench [184]. Because of the limited
system size of the original pancake-shaped geometry in [184],
the instability is expected to be driven by an angular mode
with (k) X Rgec ~ 1 and m > 1 [431], as also experimentally
evidenced in a recent set of experiment [412]. Following their
first observation, the authors of the above-cited experimental
works characterised the absence or existence of a modulational
instability as a function of the trap geometry via its signature
on the final density distribution; i.e. the observation of single or
multiple droplets long after the quench [432]. They identify a
critical trap aspect ratio A = 1.87(14) (compared to the dipole
orientation, z) above which the modulational instability exists;
see also section 5.3.1. The instability itself was not experi-
mentally investigated in these works as they focused on the
long-time behaviour, which results from a subsequent intric-
ate non-linear dynamics loosing track of the unstable mode
driving the collapse. The authors found that these final dens-
ity distributions were surprisingly stable, which revealed an
unpredicted stabilisation mechanism. This discovery set the
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Figure 19. Roton mode in a 'Er dBEC of cigar shape (cigar along
v, dipoles along 7). (a) Average momentum distribution showing the
appearance of two side peaks at finite k, (along the cigar elongation)
after a quench to lower a. (b) Extracted ko for different traps, as a
function of 1/¢;, £, the confinement length along the dipoles. Data
(dots) are compared to a semi-analytical theory (dotted line) and
numerical simulations of the GPE (dashed line). (c) Imaginary roton
gap, A, versus a, extracted from the growth rate of the momentum-
peak population and comparison to the results of the semi-analytical
theory (solid line). The inset show the same data but as a function of
the time after the a-quench. Reproduced from [311], with
permission from Springer Nature.

ground for a new paradigm of quantum fluids, which will be
discussed in the next section 5.

o Experimental investigation of the roton instability

As introduced in section 4.1.3.3, Chomaz et al [311] first
observed the roton excitation by probing the instability dynam-
ics of a large, cigar-shaped dBEC of '®Er with transverse
magnetisation. Chomaz et al performed a fast interaction
quench and studied the short-time evolution of dBEC. The
authors reported the transient appearance of remarkable struc-
ture in the momentum distribution of the dBEC with a high-
amplitude central peak framed along the cigar-long axis by two
lower-amplitude symmetric side peaks, see figure 19(a). Based
on a Bogoliubov picture relevant for the short-time dynam-
ics, this was interpreted as the coherent population of finite-
momentum excitation modes thanks to its privileged dynam-
ical softening to imaginary energies, indicative of an unstable
roton mode. By further studying the peak position and the
time evolution of its population, the authors demonstrated the
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characteristic scalings ko ~ 1/£. and wy o (a —a*)'/? for
the unstable regime (a < a*); see figures 19(b) and (c). These
observations are in agreement with theory predictions based
on an analytical model as well as on GPE simulations.

4.2. Dipolar quantum-degenerate Fermi gases

Degenerate Fermi gases of polarised dipolar fermions con-
stitute an interesting system in which identical fermions dir-
ectly interact. Alkali-metal polarised fermions are usually
non-interacting, as, away from FRs, the short-range interac-
tions can be neglected due to the Pauli exclusion principle;
see section 3.1. Because of universal dipolar scattering (see
section 3.2), dipolar fermions do interact and thus offer a
unique possibility to explore physics combining the effects
of Fermi statistics and interactions. In particular, this system
offers new prospects for the creation of novel Fermi liquids
[434, 435], anisotropic superfluids [436], interlayer superflu-
idsin optical lattices [437—439], or topological p, + ip, phases
[440]. Interesting prospects relate to higher-orbital BCS pair-
ing. This is permitted in dipolar DFGs (dDFGs) thanks to
the partially attractive character of the DDI. Such a high-
orbital BCS transition would induce exotic superfluid beha-
viour. However, it requires a very low temperature to be
observed [13, 15], beyond current possibility; see section 2.

In dDFGs, the DDI competes with the Fermi energy, Er =
%. The figure of merit is given by the ratio nS?d? / Eg, corres-
ponding to the ratio 7 = Egip/Ex also used when considering
thermal gases in section 4.1.2.2. For small values, 7 can be
rewritten, using the density scaling of the ideal Fermi gas as
a function of the characteristic dipolar length and the Fermi
momentum, 1 = Akpagq, Where A is a numerical coefficient.
In the homogeneous case, A = 1/72. In experimental systems
of magnetic atoms, kg is a few tens of um~! and agq up to a
few tens of nm, so 7 is typically of the order of a few percent.
This small value makes the observation of many-body dipolar
phenomena more involved in a dDFG as compared to a dBEC,
due to the large kinetic energy stored in the system (similar to
the thermal case).

On the other hand, the small 7-value enables a semiclas-
sical (Hartree—Fock) treatment of the physics of the dDFG.
Within the Hartree—Fock theory, introduced in section 1.4.2,
the DDI contributes to the total mean energy of the system
via two terms: the Hartree direct term, which is the usual MF
term, and the Fock exchange interaction, which comes from
the required antisymmetrisation of the wave-function.

o Fermi surface deformation

Similar to the Bose case presented in section 4.1, the first effect
of the DDI lies in a deformation of the ground state compared
to the non-interacting case (magnetostriction). For a DFG,
this deformation has a different flavour than for Bose gases,
because of the predominant role played by the Fock term,
which, it should be highlighted, has a pure quantum origin:
While the Hartree term dominates the ground-state distortion
in position space as in the bosonic case, it is now the exchange
term which gives a dominant contribution to its distortion in
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momentum space; that is to say, a distortion of the Fermi sea
itself. This effect has been extensively studied theoretically
[122, 123, 441-445].

The deformation of the Fermi sea under the effect of the
DDI has been experimentally observed in an Er DFG via TOF
expansion [433]. The experiment was performed in a harmonic
trap in which no well-defined Fermi surface exists, but interac-
tions do deform the Fermi sea momentum distribution. In addi-
tion, interaction effects during the expansion weakly break the
one-to-one correspondence between momentum and TOF dis-
tributions. Collisions during TOF increase the deformation,
but still the bulk of the TOF distribution deformation stems
from the momentum distribution; see figure 20.

The TOF aspect ratio of the cloud is observed to rotate
with the quantisation axis of the dipoles and its value is in
agreement with theory. A linear dependence of the deduced
Fermi-surface-deformation amplitude on 7 has been verified
experimentally as shown in figure 20. Additionally, the effect
has been seen to disappear at higher temperature kgT/Er =
1. Complementary measurements and theory have been later
reported in [445]. Here, the Fermi-surface-deformation amp-
litude could be reconstructed from the observed TOF aspect
ratio for an arbitrary gas geometry. It was also shown that the
Fermi surface deformation does not always rigidly rotate with
the dipoles’ orientation but can also change in amplitude under
the effect of the trap anisotropy. Yet such an effect remained
elusive in the Er system due to the too weak DDI and moderate
achievable trap anisotropies in the DFG regime.

Observation of many-body physics in spin-polarised DFGs
has been for now limited to the above described Fermi surface
deformation. However, many other interesting aspects may
arise, even without reaching more degenerate samples. Fol-
lowing similar trends as for the bosonic case, one can mention
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the effect of the DDI on the excitation spectrum and in com-
bination with (highly) anisotropic confinement [13]. Other dir-
ections include the special character of impurity physics in
dDFGs, the physics of multilayered or multitube systems, etc.

5. Dipolar collapse and quantum stabilised states
of Bose gases

In section 4.1.4, we discussed the instabilities of dBECs. In
the framework of MF theory, they lead to singularities in the
density (n — oo) and thus in the energy |E| — oo for the many-
body ground-state. This unphysical conclusion comes from the
fact that the simple theory framework developed in section 4
(see also section 1.4.1) breaks down at high density. When the
density is increased, two effects should be additionally taken
into account.

o First, at high density the approximation neglecting few-body
collisions beyond binary ones breaks down. At the next
order, three-body collisions should be considered. Their
inelastic contribution leads in particular to atomic losses at
high density [383, 446, 447]. Thus density is not locally
conserved and obeys the equation dn + V - (nV) = —L3n’,
where L5 is the recombination loss constant. One can effect-
ively add a non-conservative term in the GPE which repro-
duces the above equation, this term reads:

h
ihOap|3 = —iglew\“w- (58)

We also note that three-body interactions can additionally
lead to a conservative term and, very early on, its effect has
been theoretically considered, yielding the prediction of a
liquid phase [448, 449]. Despite the fact that this mechanism
has regained recent theoretical interest in the case of dBEC
[450-452], it has remained elusive in current experimental
setups [430]. Conservative three-body interactions will then
be neglected in the following.
Second, strong enough interactions yield corrections to the
population (so-called quantum depletion) and to the energy
of the BEC mode. This can be described within Bogoli-
ubov theory, where one still considers only two-body inter-
actions and assumes a macroscopic, yet not complete, occu-
pation of the condensate mode (i.e. single-particle ground
state). Expanding to second order in powers of the non-
condensed population (i.e. population in the single-particle
excited states) yields a quadratic Hamiltonian approximat-
ing the many-body one, which can be diagonalised [9, 87].
At this order, the ground state energy is given by the zero-
point energy of the elementary excitations that diagonalize
the quadratic Hamiltonian, which correspond to elementary
excitations. This ground-state energy is shifted compared to
the MF energy that matches that of a pure condensate (zero
population in excited single-particle states). The correction
to the MF results are thus referred to as quantum fluctuations
effects, i.e. coming from the fluctuations of the vacuum of
the excitations.

The resulting modification to the equation of state for a
non-dipolar BEC was first calculated by Lee, Huang and
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Yang in 1957 [115, 116]. The energy of a homogeneous
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where Ny (ng = Ny/V) is the number (densny) of atoms in

the BEC occupying a volume V. The first term of the sum is
the usual MF energy, the second one corresponds to the first-
order BMF correction, so-called Lee-Huang-Yang (LHY)
correction. The strength of the LHY correction is set by the
gas parameter noa’.

Adding the DDI modifies the spectrum of the element-
ary excitations, see section 4.1.3, equation (52), and thus
should modify their zero-point energy. This was calculated
in [453-455], giving:

( 12;vnoa Os(eqd )

repulsive Bose gas then reads E = § N° (1+

gN3

where the function Q(x) = [dfsinf(1+x(3cos’d —
1))"/? results from angular averagmg of equation (52). Since
the dispersion relation becomes imaginary at some angles
for €4q > 1, so does Qs. Therefore the energy (59) is form-
ally defined only for 49 < 1. However, the imaginary part
of Qs remains very low for £44 < 3. Then, one might ignore
it and use equation (59) for 44 2 1 without a complete
breakdown of the theory.

In addition to this energy correction, the computation
of the many-body ground state (total density n) within
Bogoliubov theory, also gives access to the correspond-
ing quantum depletion density dn = n — ny. For a homogen-
eous dBEC, one finds dn/ny = %\/noa3Q3(sdd) [453—

455], recovering on/ny = %\/nocﬁ in the contact inter-
acting case [115, 116]. One sees that the main assumption
behind the Bogoliubov theory, namely a dominant popula-
tion of the zero-momentum state, holds for small gas para-
meters \/noa® < 1. In the dipolar case, a similar discus-
sion on the eq44-range takes place as for the energy correc-
tion. This justifies a-posteriori the validity regime given in
section 4 for the MF theory, namely na’ < land egq < 1.
The above results hold true only for infinite, isotropic,
homogeneous BECs. The connection to experimental sys-
tems is done through two further approximations to estimate
equation (59). First, one might neglect the quantum deple-
tion assuming that all the atoms are in the BEC ng =n.
One can therefore write an equation only for the BEC dens-
ity and ignore its coupling to other modes. This approx-
imation is mostly valid for experimental conditions so far
where dn/ng is below a few percents. Second, one might
use the LDA for the calculation of the equation of state.
This assumes that the density varies sufficiently slowly to
calculate locally, for a given density n, the energy shift.
The derivation of equation (59) involves an integral over
all momenta k, which is dominated by the contribution at
k~ &1 where ¢ is the healing length. Typically, ¢ relates
to the sound velocity ¢o via & = hm/cy. For dBECs, follow-
ing equation (52) (see section 4.1.3), one can only define
an ‘angle dependent’ healing length and this diverges for
€4a = 1 along the dipole orientation. At first sight, thus, the
LDA is never applicable for 44 > 1. We will see below that
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the use of the LDA can still be justified for typical experi-
mental samples at €49 2 1, see section 5.2. Thus, within both
approximations, the local energy shift can be calculated,
and identically the chemical potential shift pgmr = agf;\yr =
ﬁ gn\na’Qs (£4q)- To solve the equation of motion for a
non-homogeneous system, one can then extend the GPE by
this extra chemical potential [431, 456, 457]:

33\/27; 2a**Qs(zaa) [ [

Now that we have effective terms to be added to the
GPE for three-body recombination (equation (58)) and BMF
(equation (60)) effects, we can compare their magnitudes to
the MF chemical potential (see equations (9) and (10)) to know
which one comes first when the density increases significantly
following an instability. To that end, one must know aq4q4, a and
L3. aqq 1s fixed for a chemical species, see section 2.5. Since
the collapse occurs for 49 > 1 with the exact value depending
on the particular trap geometry, we will fix a typical value of
€qa = 1.5, which further fixes a to the values a = 10ay (°2Cr),
44 ay ("°Er), 87 ay (1**Dy). The parameter L3 must be meas-
ured experimentally. In figure 21 one can see the absolute val-
ues of three different contributions as a function of density
[458] for the three dipolar atoms >>Cr, '®Er and '®Dy. The
values of L are extracted from [249, 382, 429]. For the above
given values of a, set using Feshbach tuning via the FRs spe-
cified in the refs mentioned above, we have Ly ~ 2 x 1040 for
2Cr, ~8 x 10~*! for '%Er, and ~5 x 10~*! for '**Dy. Note
that L3 depends on the few-body-physics details and thus can
vary with the specific FR used to tune a. In figure 21, one
observes different hierarchies of mechanisms depending on
the atomic species.

In the case of Cr, the weakness of agq leads to a weak a
beyond instability and thus weak MF and BMF effects. As a
consequence the three-body losses will have a much stronger
effect and the BMF effect can be safely ignored from the
dynamics. In this case, the instability leads to a so-called d-
wave collapse, that we review in section 5.1.

For Dy and Er, the BMF can be at par with the MF effects
before the three-body losses destroy the sample. This leads
to an entirely different dynamics, as well as new ground
states, stabilised BMF instability. We focus on this physics in
sections 5.3 and 5.4, see also [459].

ih0)|smr = (60)

5.1. Dipolar collapse

We focus here on the case of >2Cr where the BMF effects are
negligible (see above). A collapse occurs once the instabil-
ity threshold is crossed. Experiments have focused on cross-
ing the instability line (figure 17) by lowering a. Once a col-
lapse occurs, the density increases until the three-body losses
become dominant over MF attraction (figure 21 top). This
leads to a strong density depletion at the density maximum.
Then, the MF attraction is reduced, down to a point where the
kinetic energy, which is itself increased by the strong localisa-
tion of the wavefunction close to the collapse centre, becomes
stronger. At that point, the remnant BEC fraction is strongly
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Figure 21. Absolute value |u| of the different non-linear terms of
the extended GPE, assuming homogeneous density, and €44 = 1.5.
The (attractive) MF dominates at low density. For >2Cr three-body
losses (equation (58)) first become stronger, while for 16Er and
164Dy, BMF effects (equation (60)) first take over.

expelled, the BEC ‘explodes’. This can be seen as a reflec-
tion of the wavefunction at the collapse centre. The explo-
sion dynamics is thus expected to reflect the symmetry of the
collapse. Being induced by the DDI, the collapse is not iso-
tropic. The dipolar energy is minimised by decreasing the gas
aspectratio k, , (see equations (53) and (57)), and so one might
expect that the BEC collapses radially, i.e. shrinks and later
explodes in the directions transverse to the dipole orientation.
An interplay with the initial anisotropy of the cloud is also
expected.

The first experiments probing the collapse dynamics of a
2Cr dBEC were performed starting from a nearly isotropic
BEC [460]. The collapse was induced by a fast quench of a
down to an unstable value. Imaged after time-of-flight, the
expanding cloud displays a strong anisotropy, see figure 22(a).
As the collapse is induced in the radial direction, the rel-
evant timescale for the collapse, 7, is set by the largest
radial trapping frequency, 7 = min[1/v,,1/vy]. Strong atom
losses are observed to occur at the initial time of the col-
lapse (fraction of 7), before the wavefunction is reflected
away, see figure 22(b). A cloverleaf-like pattern is observed
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Figure 22. Collapse dynamics of a Cr BEC: (a), (b) in a trap

(vx, vy, ;) = (660,400,530) Hz for which the initial BEC is nearly
isotropic, reprinted figure with permission from [460], Copyright
(2008) by the American Physical Society; and (c), (d) in a trap

(vx, vy, ;) = (650,520,400) Hz for which the initial BEC is prolate,
reproduced from [428]. CC BY 4.0. Dipoles are oriented along z.
(a), (c) Time-of-flight absorption images in the yz plane (upper
rows) and corresponding simulated column density distributions
(lower rows) for different hold time after the quench of a (values
given above). Time of flight is 8 ms. The initial scattering length is
around 30-35 ap while the final around 5-8 ag, well below aci;. The
in-trap inset shows the initial BEC aspect ratio «,. (b), (d) Measured
(dot) and simulated atom number as a function of the hold time after
the quench, fhoud, in unit of 7 = 7 = 1/vx = 1.5ms. All simulations
rely on a GPE including three-body loss effects, i.e. equation (9)
plus equation (58).

in the time-of-flightimages after holding 0.2 to 0.57. This
pattern, reminiscent of the d-wave symmetry of the DDI, gave
the name d-wave collapse. The density distribution is then
observed to refocus after holding 7. This is because of the pres-
ence of the harmonic trap. The observed dynamics is very well
reproduced by simulations of the GPE (equation (9)) addition-
ally including the three-body loss term (equation (58)). The
lost fraction of condensed atoms depends on the in-trap wait
time after the collapse start, also very well described by the
GPE simulation results, see figures 22(a) and (b).

The fact that the expanding cloud remains condensed was
investigated by collapsing several independent BECs in differ-
ent sites of an optical lattice [428]. Following the collapse, the
expanding clouds overlapped, exhibiting very clear interfer-
ence fringes at long time. This proved the local coherence of
the individuals expanding clouds, and thus that condensation
was not fully destroyed by the collapse.

In anisotropic traps, not only the DDI but also the trap
geometry impacts the collapse symmetry. In this way, very
different patterns of the expanding BEC can be generated,
evidencing the rich interplay between trap geometry and DDI
in dBECs. This effect has been extensively studied in [428],
where the authors studied different cases from very prolate to
very oblate geometry. They also investigated the cross-over
from a prolate geometry to the symmetric one of [460], as
shown in figures 22(a) and (c). While the two traps considered
here have very similar frequencies within a simple permuta-
tion vy <+ v;, they display significantly different dynamical
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behavior. This ultimately demonstrates the role of the aniso-
tropic DDI in the collapse dynamics.

5.2. Theoretical description of dipolar quantum stabilised
states

5.2.1. Simple description of dipolar quantum stabilisation.
The phenomenology of MF unstable, strongly dipolar BECs
of Er and Dy is fundamentally modified by the BMF effects.
These effects can affect not only the dynamics of the BEC
when driven to an unstable regime but also modify its stability
itself, as it introduces a stabilisation mechanism. Indeed, the
LHY correction of equation (60) provides an additional con-
servative potential, which acts as an effective higher-order (in
3D, effective 5/2-body interaction) interaction term in the GPE
and which remains repulsive within its whole validity range
[461]. This higher-order repulsive term has a density depend-
ence of a higher power than MF (2-body interaction). In the
attractive MF regime, it thus could be thought to stabilise a
high-density state for which BMF repulsion compensates MF
attraction.

Let’s first consider the simplest case of single-peaked
ground state—standard BEC in the MF stable regime and later
called ‘droplet’ in the MF unstable regime. Using a Gaussian
ansatz for its wave function v (see also equations (54)—(57)),
one can calculate the MF and BMF contributions to the
ground-state energy per particle and single-out the key ingredi-
ents that lead to stability:

E, 1
= g7 5 e (1= fain() 2) D
3/2
E 2 128
N - <5) 2" T yr VI ), (6

where n, is the central density. For fy,(x)eaa > 1, Emp <0
while Egmr > 0. Egmr has a stronger dependency in the dens-
ity by a power nl/ 2 compared to Eyg, therefore, by increasing
ne, the ground-state energy can be minimized at a finite value,
corresponding to a finite density. This stabilisation mechan-
ism, relying on the mere effect of quantum fluctuation, is what
we coin dipolar quantum stabilisation.

5.2.2. Simple description of ultra-dilute liquid state.
Remarkably, in presence of MF attraction, the single-peaked
state considered above can be stabilised even in the absence
of trapping, by competing MF attraction and the BMF repul-
sion, the equilibrium between these two forces fixing the peak
density n. (MF attraction dominates at low density, and BMF
repulsion at high density).

Such a stabilisation mechanism is reminiscent of a liquid
phase of matter. In ordinary liquids, the weak attraction on
large distance (e.g. of van der Waals or covalent types) is
counterbalanced by a strongly repulsive core arising from
the electromagnetic forces and the Pauli exclusion between
the atoms’ (or molecules’) electron cloud. This stabilises the
liquid at a large density at which the repulsion becomes effect-
ive neaj ~ 1. The stabilisation resulting from competing MF
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and BMF effects in strongly dipolar gases can similarly be seen
as resulting in a liquid state.

Considering for now such an untrapped system, and neg-
lecting kinetic energy, the equilibrium peak density can be
estimated by imposing gTEC =0, with £ = Eyr + Egmg. One

faip(K)€aa — 1

gets:
( Os(eaa) )2'

We note that equation (63) also provides a good estimate
of the peak density in a trapped stabilised state, as long as one
can neglect contributions of the kinetic and external trapping
energies.

Interestingly, from equation (63) one can read-off that a
stabilisation of the density occurs before reaching the dense
regime nca’® ~ 1, thus forming ‘ultradilute’ liquid states. Two
main effects enable to maintain the diluteness: the equilib-
rium density is reduced by the fact that there are two com-
peting MF interactions, resulting in an effective MF attraction
of much smaller amplitude than each of the two contributions
(numerator in equation (63)). Second there is an amplified
BMF contribution that leads to a further reduction of the dens-
ity (denominator in equation (63)) [462].

The relatively low stabilising density resulting from these
two ingredients protects the sample against an immediate
destruction by three-body recombination. The dipolar collapse
observed with Cr is thus prevented. Instead the BEC is sta-
bilised via the effect of its quantum fluctuations, resulting in
a distinct phase of liquid-like properties, the clouds formed
are thus named quantum (dipolar) droplets. These droplets are
denser than the MF-stable gaseous BEC, yet much more dilute
than ordinary liquid (by ~8 orders of magnitude). They offer
a distinct paradigm of quantum fluid where the BMF effects
are predominant yet tractable, see e.g. sections 5.2 and 5.3.4.

We note that these exact same ingredients are present in
another experimental system, namely mixtures of contact-
interacting BECs with repulsive intra- and attractive inter-
species interactions [463—465]. The stabilisation mechanism
of bosonic mixtures was in fact proposed prior to the observa-
tions on dipolar BECs by Petrov [466]. For more information
on these systems, see [459].

Finally, we note that, despite the fact that we have for now
neglected trapping effects in this first description, they may
also play a crucial role in the newly stabilised quantum states.
In the case of dipolar atoms, this effect is not only quant-
itative (energy shifts) but also qualitative. Indeed, the inter-
play between trap anisotropy and DDI yields new features
already in the MF-stable BEC, as reviewed in sections 4.1.3.3
and 4.1.4.3. These new features in the excitation spectrum, that
affect the MF instability, when combined with quantum stabil-
isation, may yield new ground states. This effects will be the
focus of section 5.4.

1
a3

(63)

Ne ~

5.2.3. Towards a quantitative theory description: extended
Gross—Pitaevskii equation. ~ Following the experimental
observation of quantum droplets that we will more thoroughly
describe in section 5.3.2, several theory works [431, 456, 467]



Rep. Prog. Phys. 86 (2023) 026401

Review

developed the framework based on an extension of the GPE
(eGPE) to include the first order BMF effects. As introduced
at the beginning of this section 5, this consists in extend-
ing equation (9) with the term equation (60) (and poten-
tially equation (58)). This perturbative approach is justified
because the sample remains dilute with na; < 1. Here the
BMF correction comes into play not because the gas parameter
becomes large but rather because the overall MF terms are
tuned small while both contact and dipolar interaction remains
individually large. Then the BEC quantum depletion remains
limited.

We note that the theory model relies on the use of the LDA
for the LHY term. This approximation is justified if the dom-
inant contribution to the LHY term has momentum larger than
the inverse size of the ground state. Physically, the LHY cor-
rection, which corresponds to the zero point motion of the ele-
mentary excitations (see above), are dominated by contribu-
tions of the hard modes, i.e. the most energetic ones. Crucially,
when decreasing a (as to drive the MF-instability), the modes
whose excitation occurs perpendicular to the dipoles get softer
(and lead to the instability) while the one along the dipole
get harder. The latter will then dominate the LHY correction.
Remarkably, the BEC close to instability and the quantum sta-
bilised states get very extended in the direction of the dipole,
under the effect of magnetostriction (see section 4.1.2). There-
fore, the LDA may remain a surprisingly good approximation
in this regime, and even beyond the instability threshold.

Quantitatively, Wichtler and Santos [431] show that, using
an anisotropic momentum cutoff, with an anisotropy match-
ing the anisotropy of the droplet itself, at 1% of the inverse
of the droplet extent, one still recovers most of the BMF
effects (80%). This proves that the LDA is a good qualit-
ative, and even quantitative, approximation, as long as the
droplet remain elongated enough. The contribution of the
long-wavelength modes may lead to small corrections, yet
the authors note that this would mainly modify the prefactor
of the LHY correction while the scaling should remain that
of equation (60). This domination of the LHY correction by
hard modes which makes relevant the use of the LDA even in
small sized quantum-stabilised states is also found in quantum
droplets of bosonic mixtures as originally proposed by Petrov
[466], see also [459, 463-465].

The relevance of eGPE framework was later quantitatively
studied both in theory and experiments. Results from the eGPE
and quantum Monte-Carlo (QMC) simulations of dipoles with
hard-sphere repulsion were compared in [457] and found to be
in good quantitative agreement. In experiment, the degree of
agreement was found to vary depending on the exact settings,
in particular on the gas geometry and on the density, see e.g.
[189, 246, 249, 307, 311, 312, 328, 329] and later discussions.
Typical discrepancies could be simply accounted by shifting
the scattering length value by a few, and up to a few tens, of
percents. More recently, a quantitative study compared eGPE
theory, diffusive QMC simulations using finite-range interac-
tions, and experiments [308]. A good agreement of the QMC
results and the experiments was found, whereas the eGPE res-
ults are systematically shifted. Boettcher et al elaborate on the
eGPE mismatch and show that it may be accounted by a more
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sophisticated description of the scattering, in particular by
accounting for the effects of finite collision energy on the scat-
tering properties, due to the finite temperature of the samples.
Such effects are known to result in an effective renormalisation
of the dipolar length [340], see also section 3.1. By including
such corrections in the eGPE yields a better agreement with the
experimental data. Note that corrected eGPE and QMC con-
stitutes two complementary theories that are able to describe
experimental observations by accounting for different effects.
The corrected eGPE accounts for temperature effects on the
scattering properties but only includes quantum fluctuations at
a perturbative and approximate level. QMC fully accounts for
the quantum fluctuations, yet neglects thermal effects. The two
theories account for different effects, and suggest that different
sources of corrections with respect to the standard eGPE the-
ory may be relevant. A full theoretical modelling, accounting
for the different effects at once, and revealing their respective
role, is yet missing.

5.3. Dipolar quantum droplets

We now divide the discussion of quantum-stabilised states and
their observations in two sections. In the present section, we
will discuss the regime where the underlying ground state
present no self-modulation, i.e. it has only one density peak
and forms either a standard BEC (repulsive MF) or a droplet
state (attractive MF). In experiments, the droplets could there
be produced either in assemblies of independent droplets,
forming then a metastable state, or individually. We will more
specifically focus on the latter case, which allows for a detailed
characterisation of the state’s properties, in presence and in
absence of external trapping. In a second part, we will focus
on the generation of self-modulated states in dipolar gases
with anisotropic confinement. We will particularly focus on
the global coherence and superfluid properties of the modu-
lated states, and discuss the existence of a so-called supersolid
phase (SSP), where solid and superfluid orders coexists, see
section 5.4.

5.3.1. single droplet ground state in an external trap, eGPE
phase diagram.  Following the seminal work establishing
a theory description of the quantum-stabilisation mechanism,
theoretical works tackle the question of the ground-state phase
diagram of a dipolar gas and in the presence of the newly dis-
covered stabilising term [456, 467].

The presence of an anisotropic harmonic trap with aspect
ratio A =w,/w, (see also equation (44)) was considered,
yet cylindrical symmetry around the dipoles direction z was
assumed. Mean trap frequencies and atom numbers follow-
ing the experimentally relevant values were considered. In
these works, only single-peaked ground states were predicted
(i.e. no droplet assemblies, see section 5.4.1). When decreas-
ing a at fixed atom number and trap geometry, the ground
state was found to change from a low-density phase, match-
ing a standard MF-stabilised BEC, to a high-density phase,
stabilised by the LHY term, forming a ‘quantum droplet’. The
low-density BEC has a geometry roughly following that of the
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Figure 23. Eigen-state phase diagram of a dipolar BEC of

N = 10000 atoms in a cylindrical harmonic trap of aspect ratio

A = w; /w;. This diagram is obtained applying a Gaussian ansatz to
the energy functional 47, for a fixed value of Nagd/ano ~ 79, this
corresponds for Dy (Er) to a mean trap frequency of 80 Hz

(312 Hz). The colouring shows the ground-state density in
logarithmic scale and arbitrary units.

trap, while the droplet state is not. In particular, the droplet
is always elongated in the direction of the dipoles, which is
why it is sometimes called ‘filament’. For traps elongated
along the dipoles (A 2 1), the ground state smoothly evolves
from the low-density MF-repulsive BEC to the high-density
MF-attractive quantum-droplet phase when decreasing a. This
smooth crossover can be apprehended as the trap elongation
along the dipole direction enables the two states to have similar
geometries (elongated along the dipoles), so that one can con-
tinuously evolve into the other, while the BMF term suppresses
the dipolar collapse described in section 5.1. In the oppos-
ite case of large A, a discontinuous transition between the
two states is found, with an intermediate region of bistability,
where the two states form local energy minima. This bistabil-
ity can be apprehended from the following argument: in such
traps, a low-density state can be stabilised even for e4q > 1
as the trap asymmetry forces the dipoles to lie side-by-side
enhancing the MF DDI repulsion. This is exactly how Cr BECs
have been stabilised at low a, as described in section 4.1.4, and
the addition of the BMF term only weakly modifies this beha-
viour. On the other hand, the BMF term stabilises an other
solution which is elongated along the dipoles and where MF
DDl is attractive. The bistability occurs as there is an interme-
diate regime of a where both solutions are local energy min-
ima, while in the absence of the BMF term (as relevant for Cr)
in this region the MF repulsive BEC is metastable.

The theoretical phase diagram is represented in figure 23.
The exact position of the boundaries and critical point depend
on the exact experimental parameters (number of atoms, mean
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Figure 24. Ordered droplet ensembles observed in the MF-unstable
region of the phase diagram. The magnetic field points put of the
plane. Reproduced from [184], with permission from Springer
Nature.

trap frequency, etc). The crossover and the bi-stable region are
separated at a critical aspect ratio A, typically A. ~ 1.5-2. In
the remainder of this section, we review the extensive experi-
mental exploration of this phase diagram.

We note that the description given above does not give a
full picture of the dipolar gas phase diagram in presence of
quantum stabilisation. This description encompasses the beha-
viour in a low-atom-number regime. For larger atom numbers
(and/or tighter traps), distinct ground states may arise, and in
particular spontaneous density modulation may occur, or, in
other words, ground states bearing several droplets may be
found. This regime, achieved more recently in experiments,
will be the topic of section 5.4.

5.3.2. First observations of droplet states: metastable droplet
assemblies and the quest for the stabilisation mechanism.
The first evidence for the absence of dipolar collapse and the
existence of a stabilisation mechanism was reported by Kadau
et al [184] on Dy, before any of the theoretical develop-
ment described in sections 5.2-5.3.1. Starting from a pancake-
shaped BEC of '®*Dy atoms in a trap with aspect ratio A ~ 3,
a was lowered down to the MF unstable regime. In this geo-
metry, we note that a modulational instability is expected,
see section 4.1.4.3. Below the instability threshold, ordered
droplet ensembles were observed in the in-sifu radial density
distribution of the cloud, as can be seen in figure 24. Contrary
to the expectations at the time, these droplets were observed
to have very long lifetimes of several hundreds of ms, simply
limited by atom loss due to three-body recombination.

As shown in the early theory works [431, 456], the observa-
tion of multiple droplets arises from a crossing of the boundary
between the BEC region and the bi-stable region of the phase
diagram. In this regime, a continuum of metastable states,
with different numbers of droplets, is expected to exist. These
works suggest that, following the fast change of the interac-
tion strength, the system ends up in one of these metastable
states, explaining the observed long lifetime of the crystal as
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well as the shot-to-shot variability of the structures. Experi-
mentally, the system’s bistability was evidenced via the hys-
teresis in the appearance and disappearance of the droplet
ensembles when varying a down and back up, thus supporting
the theoretical picture. As observed after a long hold time, the
arrangement of the droplets was found to result from the repul-
sion between the corresponding macroscopic dipoles (see also
[429, 430]).

A following set of experiments [429] showed that the
droplets have an elongated shape along the dipoles with an
axial length of a few micrometers and a radial size estim-
ated to half a ym or less (this lies below the imaging resolu-
tion). Furthermore, matter-wave interference fringes observed
from several expanding droplets proved them to be indi-
vidually superfluid. They were observed to have extremely
low expansion velocities when released into a waveguide. In
[429], Ferrier-Barbut et al, inspired from the work of Petrov
[466] on BEC mixtures, proposed that BMF effects act as
a stabilisation mechanism. By comparing additional expan-
sion and lifetime measurements to a model following the lines
given in section 5.2.2 (neglecting kinetic and trapping effects),
they validate this idea and invalidate a possible mechanism
based on three-body forces proposed in [450—452], see also
the earlier works of [448, 449]. In particular, the lifetime 7
of the sample, being set by the three-body loss processes,
gives information on the sample’s density via 7 = L3 (n?) (see
equation (58)). The estimated density scaling of density as a
function of a deduced from measuring 7 as a function of a
was found to reasonably agree with the simple density scaling
of equation (63), and disagree with the scaling expected from
three-body forces stabilisation.

In this setup, the bistability, yielding excited metastable
states of multiple droplets after an interaction quench, prevents
the formation of a large single droplet in the ground state. This
feature has limited the study of the properties of the liquid-like
state. Shortly after, it was found out, in particular thanks to the
theory development described in section 5.3.1, that this issue
can be resolved by taking advantage of the ‘crossover region’
of the phase diagram, i.e. changing the trap geometry, as we
will now discussed.

5.3.3. Crossover from a Bose—Einstein condensate to a large
quantum droplet.  Following the first droplet observations
[184, 429, 430] and the resulting theoretical development
[456, 467], Chomaz et al tested the universality of the stabil-
isation effect (which relies on the sole quantum-mechanical
nature of the fluid, provided that the interactions are strong
enough), by realising the first quantum droplet of a distinct
chemical species, using '°Er [249]. They also used a com-
plementary geometry to the previous Dy observations, using
a cigar-shaped trap with A < 1, and thus they observed a
smooth crossover from a BEC to a single large droplet of Er
atoms containing all the condensed atoms. Because the cre-
ated droplet is isolated, the authors could study its properties
such as its elementary excitation, and its expansion dynamics,
see figure 25. The authors performed a systematic comparison
of the measurements with the eGPE predictions (equation (9)

49

2 F 7
m
£
=
2 7\
(%2

\

S 1t ]
[&]
S
[}
>
c
5 f
k] "
c
g l:lu nco!(“mz)
x
L

35 3025201510 5 O
T T .

2.4 T T T
= | |
2 4—@3—»
>22 | i
@
[}
c
(0]
=]
g20} -
q) \
ko] \
g b
= 1.8 | g @ S . —
z | g
16 () A 1 1 , ®
40 70 80 90 100

Scattering length, a_(a,)

Figure 25. Examples of properties of a '®*Er dBEC in the crossover
from a BEC to a single macrodroplet reported in [249]. Here a is
varied in 10 ms to its final value, in abscissa. (a) Mean expansion
velocity measured in 16-28 ms free-expansion after 5 ms holding in
trap. The insets show measured distributions in the plane transverse
to the dipole orientation for 28 ms of free-expansion, and also
evidence the absence of collapse dynamics in the low a-regime.

(b) The axial mode of the dBEC, whose character is illustrated in
inset, is excited by transiently decreasing the confinement frequency
along the dipole, v||, and the mode frequency, vax, measured by
recording the time-evolution of the cloud size along the dipole. In
(a) and (b), the data (squares) are compared to simulations from real
time evolution of the eGPE including (red solid line) or not (orange
dashed line) the LHY correction (equation (60)). In (b), vax cannot
be reliably extracted for quenches to a < 564y, nor from the
experiment (open squares) neither from the eGPE theory (open
circles, thin line). Reproduced from [249]. CC BY 4.0.

including also equations (58)—(60), see section 5.2) using
independently measured values of a and L;. The quantitat-
ive agreement reached confirmed the stabilisation scenario and
validated the eGPE framework in this setting. We note again,
that quantum droplets have later been observed in mixtures of
contact-interacting BECs [463, 465] following Petrov’s initial
proposal, establishing the quantum-stabilisation mechanism
as universal even across different interaction types, provided
that competing interactions lead to a balance of MF and BMF
contributions.

Finally, the two regimes of bi-stability and crossover where
experimentally connected in [432], where similar experiments
were performed using '®*Dy in traps of variable aspect ratio \.
The formation of a single droplet resulting from lowering a in
the crossover was observed for small A up to a critical aspect
ratio A\, which marked the onset of a modulational instabil-
ity as in [184]. The experimental value of ). is in agreement
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with the expected critical aspect ratio marking the separation
between the crossover and bi-stable regions.

5.3.4. Droplet properties and their signature in the collective
modes.  Following the first experimental observations, sev-
eral works investigated the specific properties of the droplet
states properties.

Theoretically, it is interesting to highlight that, while the
trap plays a role in the phase diagram and the transition
between the different phases (see section 5.3.1), it plays a
much lesser role on the properties of the single droplet state
itself, at least for large enough atom number and €44. By study-
ing full ground-state solution from the eGPE, [430, 456, 467]
show for instance a very weak dependence of the droplet dens-
ity on the trapping potential. At very low atom number (i.e. on
the order of a few thousand), the one-body kinetic energy is
non-negligible, and its interplay with the interaction energies
leads to a dependence of the central density on N. However,
at high atom number, the interaction energies fully dominate.
Following the simple description of section 5.2.2, the dens-
ity then reaches a saturation value independent of N, given
only by the balance of MF and BMF energies. This marks
the low compressibility typical of a liquid phase, and which
stems here from the high energy cost of increasing density
due to the BMF term. While early experiments have mostly
explored the low atom regime, first measurements showing
the onset of this density saturation have been recently reported
in [459].

Besides its evidence via density saturation, the low com-
pressibility of the dipolar quantum droplets has been revealed
in different sets of measurements, in particular focusing on
the collective modes. First investigations were performed by
Chomaz et al, studying a particular collective mode, with com-
pressional character, of a quantum gas of '®Er in the BEC-
droplet crossover [249]. As the scattering length is lowered
through the crossover, a steep increase in the mode frequency
was observed, changing by 50% when varying a by less than
20% while the trap frequency remained constant, see figure 25.
This shows that the compressibility quickly drops when going
from the BEC to the droplet phase.

In addition to being weakly compressible, a dipolar
quantum droplet is anisotropic. This stems of course from
the anisotropy of the DDI with respect to the external mag-
netic field axis. The consequence of this external breaking
of rotational invariance is the existence of a collective mode,
deemed the scissors mode. It corresponds to a rigid-body angu-
lar oscillation around the magnetic field direction. This scis-
sors mode has been observed first in atomic nuclei [468—470]
and in contact-interacting BECs in anisotropic traps [471,
472]. In the presence of the DDI, the rotational symmetry is
broken even in isotropic traps. This was showed to result in
a scissors mode for MF dipolar BECs in [473]. This mode is
well-defined only for angular oscillations in the xz-plane with
an amplitude lower than On.x = ((22) — (x%))/((%) + (x*))
where z is the field direction [471]. It is thus very challen-
ging to observe with dipolar MF BECs, but was observed in
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Figure 26. Measured self-bound liquid to gas phase diagram of Dy
atoms. The theory curve results from simulations of the eGPE. Data
are shown for both '**Dy and '%2Dy. For **Dy, the background
scattering length had to be adapted from the literature value

(92(8) a, green circles) to a lower value (69(4) ao, red diamonds),
see also discussion in sections 5.2 and 5.3.4. The horizontal error
bars are systematic errors coming from uncertainties on FRs
positions and widths. Reproduced from [246], with permission from
Springer Nature. Reproduced from [308]. CC BY 4.0.

dipolar quantum droplets of '**Dy thanks to their consider-
able anisotropy [307]. In conclusion, studies of the collective
modes of the liquid state are a sensitive probe for its properties
[474] and will likely be pushed further.

5.3.5. Self-bound droplets and liquid-gas phase diagram.

The possibility of creating a single large quantum droplet by
tuning the trap aspect ratio, as described in section 5.3.3, was
key in the demonstration of the self-bound liquid nature of this
phase. A quantum droplet living in equilibrium between the
repulsive BMF and the attractive MF interactions, the question
of the necessity of the trap for the existence of this phase then
arises. Two theory papers demonstrated indeed the existence
of a self-bound state in the absence of a trap, characterised by
a non-vanishing peak density in infinite volume [467, 475].
This defines a liquid state, existing from the mere balance
between high-density repulsion and low-density attraction.
However, this liquid is in essence quantum, which provides
it with macroscopic new properties. First, it remains phase-
coherent within a droplet. Second, the self-binding poten-
tial resulting from MF attraction from other atoms within the
droplet must counter-act kinetic energy. As a consequence if
the volume is too small, kinetic energy prevents the exist-
ence of a bound state. This yields a phase diagram as a func-
tion of atom number and scattering length, with a single line
separating the self-bound state from a gas at low atom num-
ber and high scattering length, see figure 26. The scattering
length dependence of the atom number value on the separation
line is sharp. Indeed, using scaling arguments, one can show
that the minimal atom number for the existence of the self-
bound state scales as N, ~ (1 — eqq faip(#)) />, First indic-
ations of a self-bound behaviour were already evidenced in
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Figure 27. Single self-bound droplets without a trapping potential
can be produced by preshaping the droplet in an appropriate trap
which is then switched off. The droplet stays bound and floating in
the chamber until eventually the losses reduce the atom number
below a critical value where no bound states exist any more. That
manifests the transition to a gaseous phase where the atoms expand
like a gas. Reproduced from [246], with permission from Springer
Nature.

the early work [429] through the absence of expansion in a
waveguide and record-low expansion velocities in free space.
Yet, the self-bound character could not be observed because
of the limited atom number. Because of the large loss rate
occurring in Er droplet (see figure 21), the evidences of the
self-bound behaviour of the macro-droplet of [249] was par-
tial, limited by the state lifetime. Here, only a slowing down of
the expansion dynamics was observed. An unambiguous self-
bound behaviour was then observed on 164Dy in [246]. Here
a single droplet was created using an axially elongated dBEC
[476] of 3000 Dy atoms and cruising the crossover to the single
droplet state, similarly to [249]. The trap was then smoothly
released while the atoms were levitated against gravity using
amagnetic-field gradient (see figure 27). Unexpanded droplets
were observed up to 90 ms of levitation. Using the atom loss
as a probe, the liquid-to-gas transition was mapped out in the
(a, N)-space. This phase-diagram was later expanded to lar-
ger atom number by using samples of 12Dy atoms [308], see
figure 26. The experimental points of the two isotopes match
well together and agree with eGPE predictions, at the expenses
of a substantial renormalisation of the background scattering
length of the '*Dy isotope, by a factor of 3/4. The need of such
an important change of ay,, rose questions about the validity of
the eGPE treatment in particular in the low-atom-number and
large-c4q regimes (see also the discussion in section 5.2), or
again of the methods employed to extract ay, (see section 2.4),
in particular in the Dy case.

To conclude, the self-bound liquid-gas phase diagram,
being simply due to the quantum mechanical nature of the sys-
tem, is not restricted to the dipolar case. It may in fact be gen-
erally expected in quantum gases where two interactions of
different origin compete, and as such it has been observed in
Bose-Bose mixtures [463, 465]. It is interesting to note that in
lower dimensions this phase diagram is completely modified.
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This has been the topics of several theoretical works, both for
dipolar and mixtures systems, see e.g. [477, 478].

5.4. Dipolar supersolids

In section 5.3, we have reviewed how the quantum-
stabilisation mechanism discovered in 2016 (see section 5.2),
may yield new ground states BMF instability. There the
ground state were limited to single droplet, as relevant for the
early experiment, due to the small atom numbers and shallow
traps (independent on the trap geometry, see section 5.3.1).
Here we review how the same stabilisation mechanism yield
to formation of self-modulated and in particular supersolid
ground state, as well as their experimental investigations.

5.4.1. Preliminary works.  Supersolidity is a paradoxical
phase of matter in which the antithetical properties of crystal
arrangement and of superfluid flow coexist. It has been sug-
gested more than half a century ago as a paradigmatic mani-
festation of a state in which two continuous symmetries of dis-
tinct nature are simultaneously broken [479-481]. Originally
predicted in quantum solids with mobile bosonic vacancies
[482—484], the search for supersolidity has spread in many dif-
ferent fields of physics. Observation of supersolidity in helium
was claimed [485] but the claim was withdrawn by the same
authors a few years later [486] and the quest for supersolid-
ity in helium is still open [481, 487]. The possibility of super-
solid states in quantum gases were theoretically proposed long
ago, see [488—-498]; this possibility linking back to the sem-
inal work from E. Gross [480] on assemblies of bosons with
momentum-dependent interactions, see also [397, 499].

Besides the supersolids made from dipolar quantum fluids
alternative approaches to supersolidity with ultracold atoms
include miscible two-component BECs with SOC as well as
optically pumped superfluids in a cavity that mediated inter-
actions via the scattered light [500, 501]. All concepts have
in common a momentum-dependent interaction that leads to a
minimum at finite momentum in the dispersion relation on the
superfluid side of the phase transition. This is called the roton
minimum. In both the dipolar supersolid and the SOC systems,
two branches of the excitation spectrum exist on the supersolid
side of the phase transition. They correspond to the Goldstone
modes of the two double symmetry-breaking processes, the
breaking of the translational symmetry and the breaking of
the U(1) phase invariance of the condensate. More recently,
a continuous U(1) translational symmetry was created in sys-
tem of multimode cavity light coupled to a BEC. The breaking
of this symmetry resulted in a supersolid with transverse vibra-
tions exhibiting a Goldstone dispersion of phonon excitations
[502]. We will now focus the discussion on the simultaneous
quest for a supersolid supporting crystal phonon excitations
like a real solid in a dipolar gas only.

This authentic supersolid behaviour can be expected if
the simultaneous breaking of the two symmetries arise from
the intrinsic interactions between the particles. As already
highlighted by E. Gross, the relevant platforms for observing
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supersolidity are quantum gases with inter-particle interac-
tions yielding large-momentum attraction [397, 480]. Prac-
tical examples are Rydberg-dressed potentials, spontaneous
or light-induced DDIs in confined geometries [489—498]. In
these settings, a roton-type excitation is induced in the super-
fluid’ excitation spectrum by the large-k attraction (see also
section 4.1.3.3). Its full softening may indicate the transition
to a density-modulated state as the roton signals an intrinsic-
ally favoured length scale and has been seen as a precursor
of crystallisation [397, 499]. The observation of a roton mode
in dBECs confined in cigar-shaped geometries [311, 312] was
key to point promising grounds to observe supersolidity [498],
see also section 4.1.3.3.

A recurrent hindrance to the interaction-driven formation
of supersolid in quantum gases lies in the predicted MF col-
lapse of the gas at the roton instability, see sections 4.1.4.3,
5.1 and [503, 504]. Protocols to stabilise the gases beyond
its instability thanks to the engineering of higher-order (three-
body) interaction potentials have been proposed [497]. How-
ever, these protocols have not been implemented in experi-
ments so far. The discovered BMF stabilisation mechanism
provides the key ingredient for an intrinsic stabilisation.

In 2017, theoretical works based on the eGPE [505, 506]
demonstrated that not only a single droplet (as described in
section 5.3.1) but also assemblies of multiple droplets, or
in other words density-modulated states, could constitute the
ground state of dipolar quantum gases. This was found for
both pancake and cigar geometries, by simply using tighter
trap and/or larger atoms numbers than in the previous works
of [456, 467, 474]. Similar observations were also achieved
via QMC simulations with large densities [507, 508]. Starting
from the picture of a single droplet state, the physical argument
to the formation of multiple-droplet ground-states can be for-
mulated as follow: the liquid phase has a weak compressibility
that yields a sharp increase in energy at high density, see also
section 5.3.4. If one compresses an (isotropic) liquid in one or
two directions, it then deforms to keep a constant density at the
small cost of increasing its surface energy. Yet for the dipolar
quantum liquid, the DDI dictates an anisotropy, and deforma-
tion costs a high amount of (dipolar) energy. Therefore, when
a dipolar quantum droplet is compressed along its long axis, it
might be energetically favourable to split it in several droplets
(of smaller radial sizes), recovering thus an anisotropy closer
to the one naturally imposed by the DDI. Ground states can
thus form spontaneous density modulation. Calculations with
periodic boundary conditions along one direction were also
performed, see [505], proving that a continuous translation
symmetry can indeed be broken (at the thermodynamic limit).
These predictions indicate possibilities for quantum-stabilised
dipolar ‘crystallised’ ground states and in particular open the
doors for quantum-stabilised dipolar supersolids.

The work of [505] also experimentally produced spontan-
eously density-modulated states in cigar-shaped Dy gases that
show close features to the expected ground states yet global
phase coherence was found to be absent. The lack of phase
coherence was interpreted based on a Josephson-Junction
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formalism, which describes the maintenance of a phase
relation via tunnelling processes between the individual
droplets, and its preclusion via quantum or thermal fluctu-
ations. In this experimental realisation, the tunnelling rate
between the individual droplets, or in other words, the wave-
function overlap between them, was not enough to lock the
droplets in phase. The authors of [505, 506] also showed that
assemblies of droplets with sizeable wave-function overlap
were theoretically possible by either increasing the trap fre-
quencies or the atom numbers compared to the current exper-
imental configurations.

5.4.2. First experimental evidences of supersolid behaviors.
At the end of 2018, the progressive understanding of the many
key features of Bose gases of highly magnetic atoms com-
bined in an acute picture. These features include the discovery
of the BMF stabilisation in such gases (see section 5.3.2), the
observation of the roton mode and its softening in cigar-shaped
clouds (see section 4.1.3.3—4.1.4.3), the possibility of density-
modulated ground states, matching an assembly of quantum-
stabilised droplets (see section 5.4.1), and the need of making
the droplets more extensively overlap in order to maintain the
global phase coherence in such assemblies (see section 5.4.1).
Building on this knowledge, a set of experiments [189, 328,
329] observed hallmarks of supersolid behaviours in cigar-
shaped gases of 92Dy, 1%°Fr, as well as Dy atoms. Accom-
panying theoretical works [328, 329, 498, 510, 511] related
these observations to an underlying supersolid ground state of
the gas, see section 5.4.3.

The three experimental works proved two hallmarks of
supersolidity in experiments, namely the simultaneous occur-
rence of a spontaneously formed density modulation and of
a global phase coherence. Density modulation was revealed
by the occurrence of modulated patterns in the gas absorp-
tion images, either in situ [329] or in time of flight. Here the
density patterns form from the self-interference of the gas via
free expansion of the in situ modulation. The global coherence
was demonstrated by a statistical analysis of multiple repe-
titions of this self-interference TOF patterns. Global coher-
ence is here marked by the stability of the interference pat-
terns, differentiating supersolids from an incoherent array of
droplets. Global coherence was mostly quantified through an
analysis of the complex values of the Fourier transform of the
TOF density profiles, see figure 28. We note that the coex-
istence of density modulation and phase coherence does not
prove the superfluidity of the state, which can be demonstrated
only by probing dynamic-related properties of the state, see
section 5.4.4.

All three experiments used relatively shallow cigar-shaped
traps with transverse magnetisation, similar to [311]. The
spontaneous density modulation occurred only along one axis,
the long axis of trap. The coexistence of density modulation
and phase coherence was observed in narrow ranges of scat-
tering length values, of a few ag wide, and survives a few tens
[189, 328, 329] up to a few hundreds of ms [328] in these first
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Figure 28. Examples of statistical analysis of the self-interference
patterns of dipolar quantum gases showing hallmarks of
supersolidity (a), (c) (or normal solidity (b), (d)), i.e. density
modulations with (or without) global coherence. (a), (b) Norm of
the Fourier transform of the integrated density profiles from the
individual TOF images (grey lines) and the norm of their complex
average (thick, blue or red, line) in the supersolid case and the
insulating array of droplets case. The existence of side peaks in the
norm of the complex average evidence coherence in between
density peaks (see inset). Reproduced from [329]. CC BY 4.0.

(c), (d) Representation in the complex plane of the values of the
Fourier transform of the TOF profiles at the position of the first side
peak (see (a)). The limited spread of the phases ® evidences global
phase coherence. Reproduced from [509], with permission from
Springer Nature.

experiments, later extended up to few seconds [512]. Building
on this long lifetime, [328] additionally established a differ-
ent route than standard interaction tuning towards supersolid
states, which is based on direct evaporative cooling starting
from a thermal state, see also [512].

In all three works, the states with supersolid properties
could be achieved by ramping down the scattering length start-
ing from a stable BEC, using a slower ramp and a finer tuning
of a than [311]. In the earlier works of [430, 505] observing
droplet assemblies in cigar shaped traps, the rougher tuning
of a as well as the lower initial BEC atom numbers are also
thought to have prevented the observation of supersolid prop-
erties (see also sections 5.3.2 and 5.4.1). Finally, in the sem-
inal work of [184], a distinct pancake-shaped geometry as well
as smaller initial BEC atom numbers were used. Several fol-
lowing theoretical as well as experimental works indicates that
the use of a cigar-shaped geometry was crucial for more easily
achieving supersolid states in experiment. In this geometry, the
MF instability is driven by the softening of a single (doubly-
degenerate) roton mode dictating the dominant wavelength of
the density fluctuations [311, 312, 411]. In contrast, the pan-
cake case is more complex, with several radial and angular
rotons, corresponding to different structures of density fluctu-
ations, simultaneously softening [412, 513]. Furthermore, in
the cigar-shaped case, it is expected that the transition to a
supersolid state can occur continuously, with the supersolid
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modulation directly connecting to the softened roton mode,
see e.g. [514].

5.4.3. eGPE phase diagram beyond the single-droplet
regime: droplet assemblies and supersolid states.  Fol-
lowing the observations of the roton mode population in [311]
and shortly preceding the works of [189, 328, 329], Rocuzzo
and Ancilotto [498] theoretically explored the phase diagram
of an Er quantum gas in an infinite cigar-shaped geometry
with periodic boundary conditions. They relied on the eGPE
framework developed in the context of the quantum droplet
studies (see section 5.2) and calculated the ground state as
a function of a. In this setting, they demonstrated the exist-
ence of a SSP in an intermediate range of a, separating an
array of insulating droplet (ID) at low a and a regular BEC
at large a. Both the SSP and the ID are density modulated
ground states stabilised by quantum fluctuations, similar to
the single-droplet phase described in section 5.3.1. The SSP
distinguishes itself by bearing a density modulation of finite
contrast. In addition, Rocuzzo and Ancilotto directly com-
puted, via dynamical simulation, the superfluid density of
the density-modulated states, thus rigorously establishing the
connection between the occurrence of non-fully-contrasted
density modulation and non-zero superfluid fraction. This
work proved the relevance of the SSP in cigar geometries,
beyond finite-size effects, see also [514].

Together with their experimental results, both [328, 329]
reported on eGPE calculations of the ground-state phase dia-
grams in the finite experimental geometries, see figures 29(a)
and (f). The ground states were calculated as a function of
the atom number N and the scattering length a for a given
trap and atomic species. At low N, a transition occurs from
the regular BEC to the single-droplet phase when decreas-
ing a, as described in section 5.3.1, see also [328, 456, 467].
In contrast, for large-enough atom numbers, three different
regimes could be identified similar to the infinite case results
of [498]: when decreasing a, the regular BEC state transitions
first to a density-modulated state of finite contrast, identify-
ing a SSP, and then to a density-modulated state of contrast
almost unity, forming an ID array, see figures 29(b)—(e) and
(g)-(1). We note that the atom number for the occurrence of
density-modulated states versus single-droplet depends on the
atomic species (being smaller for Dy than for Er), and on the
trap, both on its overall tightness and on its shape. The explor-
ation of the most favourable parameters for supersolidity as
well as achieving such a phase in different settings are inter-
esting directions that are currently under investigation, see e.g.
section 5.4.5.

Based on the eGPE framework, [189, 329, 515] also repor-
ted on simulations of the real-time evolution induced by
the finite scattering-length ramp used to reach the various
BEC/SSP/ID states in the experiments. These show that in
the SSP regime, the dynamical state has strong similarities
with the expected ground state and shows limited phase fluc-
tuations. In contrast, when decreasing the scattering length
lower, to an ID regime, the dynamical state deviates from the
ground-state expectation and show large phase fluctuations.
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Figure 29. Phase diagrams, calculated in [328] (a) and [329] (e) for
the relevant experiments using Er, Dy respectively. (b)-(e) ((g)-(1))
corresponding in situ axial density profile for N =5 x 10*

(N =3.5 x 10%). Besides the BEC and single-droplet phases,
identified in figure 26, density-modulated ID and SSP ground states
are found. The SSP is identified by a non-fully contrasted density
modulation. It is sandwiched in a narrow a-range in between a
regular BEC and a crystal of independent droplets (ID). Reproduced
from [328]. CC BY 4.0.

5.4.4. Towards probing the dynamical response and super-
fluidity of dipolar supersolids.  Besides the study of the static
properties of the state, as the hallmarks reported in the first
studies (see section 5.4.2), a huge interest is drawn by the spe-
cial dynamical properties associated to supersolidity. Indeed,
such a dynamics intrinsically connects to the superfluid char-
acter of the supersolid and would characterise the related rigid-
ity of its phase. The study of the dynamical properties cov-
ers a wide range of phenomena and concepts, spanning from
the study of the spectrum of elementary excitations, to that
of transport properties, or of the response to an external rota-
tion for instance. Supersolidity brings exotic characteristics to
these different features.

The first of these aspects to be explored in dipolar gas
experiments concerns the properties of the spectrum of ele-
mentary excitations of a supersolid at low momenta. Here,
not one but two branches of low-energy (gapless) ‘phon-
ons’ modes [482, 498, 516-519] are expected, the different
branches bearing excitations of different characters. Following
Goldstone’s idea [520], the number of gapless branch connects
to the number of spontaneously broken symmetries—two in
the case of the supersolid: one branch holds phonons of the
crystal and relate to a broken translational symmetry, while the
other branch holds phonon of the superfluid (phase phonons)
and relate to a broken gauge symmetry. The phase branch cor-
responds to the branch of lower velocity, and, when evolving
through the BEC-SSP-ID phase diagram, it is observed to

54

suErsnfld BEC

Ry(arb.u)

Droplet arystal

L
52 53

50 51
a, (ag)

Figure 30. Observed response frequencies for quadrupole-type
excitations in the BEC-SSP-ID phase diagram, from (a) an Er
sample, reprinted figure with permission from [310], Copyright
(2019) by the American Physical Society, and (b) a Dy sample,
reproduced from [190], with permission from Springer Nature.
Theory predictions from (a) Bogoliubov theory, (b) real-time
simulations, based on eGPE theory are shown. In (a) all the
elementary excitations, /, are shown and the colour highlight their
expected response R; to the performed trap excitations.

soften and its weight in the response to decrease, up to vanish-
ing in the ID case. On the contrary the crystal branch slightly
harden. These properties of the supersolid excitation spectrum
were theoretically investigated in various systems [516-519].
The excitation spectrum behaviour in dipolar supersolids was
further theoretically investigated in various works [310, 498,
515, 521].

Several experiments show signatures of these two branches
[190, 310, 411, 522]. Due to the finite system size, the
phonon branches are here discretised (see also section 4.1.3),
and the experiments probe the response of some specific
low-lying modes of the trapped dipolar supersolid states. In
[190, 310], the evolution of the BEC’s lowest-lying quadru-
pole mode within the BEC-ID-SSP phase diagram is probed,
see figure 30. In the BEC regime, the system responds at a
single and roughly constant frequency, and when reaching the
SSP regime, several frequencies are observed in the system’s
response. Furthermore, these frequencies are found to organ-
ise in two branches as a function of a. One branch is soften-
ing and one is hardening when decreasing a. These properties
are indicative of the emergence of modes of dominant phase
and crystal characters, respectively. Tanzi et al [190] iden-
tifies the different modes via their distinct signatures in the
time-evolution of the gas’s self-interference patterns. Natale
et al [310] identifies resonant frequencies via an unbiased prin-
cipal component analysis of the self-interference patterns and
observes a mixed character in the associated principal com-
ponent structures. The different modes’ characters between
[190, 310] may be attributed to the different numbers of dens-
ity peaks in the underlying supersolid states. Distinctly, Guo
et al [522] probe the lowest lying mode of the trapped super-
solid, which has a frequency lying below the dipole mode
and is a Goldstone mode of phase character, see figure 31.
The frequency of the mode itself is not probed due to its low
value, instead signatures of a spontaneous population of the
low-energy excited mode are observed via a statistical ana-
lysis of the in sifu density patterns. A peculiar feature of this
mode is that the motion it induces preserves the centre of mass
position thanks to superfluid flow. This implies a correlation
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Figure 31. Dynamics induced by the lowest lying Goldstone mode
of a supersolid (top) and observed correlation between displacement
and imbalance in the in sifu density patterns of experimental
realisations of Dy supersolids at 97.6ag (bottom). Reproduced from
[522], with permission from Springer Nature.

between the array’s displacement and the population imbal-
ance between the density peaks, see figure 31. By repeatedly
producing and imaging steady-state samples, Guo et al [522]
evidenced such correlations in the limited a range where the
state is supersolid. The presence of such correlations points
to the existence of the phase Goldstone mode and implies
an underlying superfluid flow. An interesting point to note
is that the emergence of this Goldstone mode in the excita-
tion spectrum connects to the softening of the antisymmetric
roton mode from the BEC [522], see also section 4.1.3.3. In
contrast, the symmetric roton mode connects to an amplitude
mode, also called Higgs mode, which sharply hardens when
moving away from the SSP-BEC transition in the SSP [521].
More recently, a detailed study of the in situ density fluctu-
ations in the SSP also revealed the existence of density and
crystal phonons [411], see also section 4.1.3.3.

Besides the study of low-lying excitations, investigation
of higher energy modes of supersolids has been recently
undertaken. This includes studies of the response to rota-
tional excitations [523], or to large-momentum excitations
[515]. Rotation excitations in [523] probe a scissor-type excit-
ation, similar to that described in section 5.3.4 for droplet
states. Here the observed scissor-mode frequency decreases at
the transition from BEC to modulated states. This indicates
an increase of the state’s momenta of inertia. It is however
not straightforward to relate this behaviour to the superfluid
fraction of the state. [515] probes the scattering of quasi-
free particles via Bragg excitations (see also section 4.1.3)
along the BEC-SSP-ID phase diagram. Here a decrease in
the response amplitude is observed when crossing from BEC
to modulated states. From impulse-approximation theory, this
decrease probes a reduction of the population of the zero-
momentum state. The observed decrease surpasses expecta-
tions obtained from the eGPE steady states. This was related
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to coherent phase evolution, induced by the dynamical cross-
ing of the quantum phase transition [524].

Besides studies of specific excited modes, the supersolid’s
dynamical properties have also been unveiled in the time evol-
ution induced by parameter quenches or ramps. This includes
interaction quenches [509] and evaporative cooling ramps
[512]. Ilzhofer et al [S09] probes the dephasing and rephas-
ing dynamics of the gas’ global coherence when dynamic-
ally crossing the ID-SSP transition. The observed dynamic
was understood by comparing to a simple Josephson-Junction-
Array model where the Josephson tunnelling amplitude was
quenched, while dissipation is empirically introduced, using
a Langevin formalism. This model shows a good qualitative
agreement with experiments, while quantitative discrepancies
are attributed to the inherently soft nature of the supersolid’s
crystal and the effects brought in by the possible excitation
of the crystal’s phonons. Studying the formation dynamics of
supersolids via direct evaporative cooling (ramp of ODTs),
Sohmen et al [512] shows that density modulation appears
before global phase coherence, but after local phase coher-
ence, is established. Sohmen er al [512] also studies the sub-
sequent decay process of the supersolids, occurring spontan-
eously under the effect of three-body recombination. In this
decay, in contrast to the formation dynamics, global coherence
is observed to survive longer than density modulation, while
the temperature remains roughly constant. Furthermore, in this
process, the strength of the density modulation, for a fixed
value of the number of locally coherent atoms, is observed to
depend on the temperature, being weaker when colder, see also
[525].

The various dynamical studies performed up to now
provide valuable insights into the supersolid state special beha-
viours, including direct and indirect signatures of the existence
of phase and crystal phonons (near k£ = 0) and their mixing, of
superfluid flow and transport, or of coherent and incoherent
phase dynamics in the experimentally produced states. Inter-
esting prospects include direct measurements of the superfluid
properties, and in particular of the superfluid density of super-
solids, and the creation of vortices in the supersolid rotation,
see e.g. [526, 527].

5.4.5. Supersolids with richer crystalline patterns and two-
dimensional character.  As discussed in section 5.4.2, the
first observations of supersolidity in dipolar gases have been
conducted in elongated and relatively shallow, cigar-shaped
traps, resulting in supersolids in which (a) the breaking of the
translational invariance occurs only along one dimension, (b)
the number of density modulations found in the finite exper-
imental system is small (typically a handful) and thus finite
size effects might be important. Yet, dipolar supersolid states
with larger and/or more complex crystalline structures, and
in particular where crystallisation occurs in two directions of
space have attracted intense interest. Theoretically, a series
of works have focused on the phase-diagram and excitation
spectra of two-dimensional supersolids in isotropic and aniso-
tropic traps [528-532], on the possibility of creating vortex
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excitations [526, 527, 533], and on the emergence of exotic
crystalline structures [513, 528, 529]. Very recently, two-
dimensional supersolidity has been observed in experiments
with Dy atoms, using anisotropic traps [530]. As a function
of the anisotropy of the trap in the directions perpendicular
to the atomic dipoles, experiments have demonstrated evap-
orative phase transitions to ground states of various super-
solid patterns from a linear chain, to a zig-zag crystalline
structures [530], and finally to a hexagonal structures in cir-
cular traps [531]. In a related effort, two-dimensional angular
roton modes, analogous to the linear roton mode in elong-
ated traps [98, 311, 312], has been observed in radially exten-
ded traps [412], see also section 4.1.3.3 for more details. By
further tuning the interplay between trapping configurations,
interaction parameters, and atom numbers, even more exotic
ground states are expected to appear, such as honeycombs,
ring and labyrinth-like SSPs [513, 528, 529]. With the consid-
erable interest that the discovery of dipolar supersolids have
generated, we expect a quick development of the field and a
blossom of works probing the various intriguing properties
of this phase as well as exploring its possibility in different
settings.

6. Spin physics with highly magnetic atoms

In the previous sections 4 and 5, we presented the many-
body physics arising in quantum gases of magnetic atoms fully
polarised in their lowest Zeeman state, under the influence of
the elastic DDI between the aligned atomic dipoles. In the fol-
lowing, we discuss the physics of ultracold gases of magnetic
atoms when the spin degrees of freedom are free and taken into
account. Of course, short-range interactions among atoms can
also be spin-sensitive, see sections 6.1.6 and 2.4: magnetism
is typically driven by the interplay of spin-dependent long-
range dipolar forces and spin-dependent short-range forces.
This interplay intrinsically takes on a very different flavor if
the atoms are free to move and collide, or if the experiment
is performed with atoms confined in an optical lattice wherein
the spins are localised at each node of a 3D array. In the lat-
ter case, the system realises spin-lattice models, where spins
interact both at a distance, directly through DDI, and by short-
range interactions via second-order processes in tunnelling.
These so-called super-exchange interactions will be reviewed
in section 7, while the current section focuses on the situation
without a lattice potential.

After introducing a few important concepts of the spin
physics with ultracold gases, including that which is unique
to highly magnetic atoms in section 6.1, we will review the
experimental achievements revealing the impact of the DDI
on spinor physics and on two-component Fermi mixtures; see
sections 6.2 and 6.3. The latter two situations can be distin-
guished by whether dipolar relaxation can be neglected, result-
ing in a system in which the total magnetisation is conserved in
the sample; see section 6.2, or whether the demagnetisation is a
key mechanism of the physics at play, yielding gases with free
magnetisation and an intrinsic SOC; see section 6.3. Finally,
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we will discuss the engineering of spin-dependent Hamiltoni-
ans using light fields and the unique contributions provided by
magnetic atoms in this respect; in section 6.4. We will examine
the engineering an artificial SOC, realising a special class of
artificial gauge fields, and the engineering of spin-spin inter-
actions that yield entangled quantum spin states.

6.1 Introduction to spinor physics

6.1.1. Magnetic atoms: a large composite spin.  Unlike elec-
trons, atoms possess a composite spin that may be large com-
pared to electrons’ S = 1/2. This enriches spinor physics. For
alkali atoms, the total spin arises from the coupling of the spin-
1/2 electron to its orbital angular momentum L and the nuc-
lear spin /. This large spin allows for the study of a new type
of quantum fluid, involving the interplay between magnetism
and superfluidity [94]. The study of degenerate quantum gases
with a large spin degree of freedom s > 1/2 initially focused
on bosonic atoms, i.e. Bose spinor gases [93]. Experiments
explored the spinor physics of F'=1 Na atoms and F' = 1 and
2 Rb atoms [94]. More recently, these studies were exten-
ded to spinor fermions using the F = 9/2 state of fermionic
K [534].

Strongly magnetic atoms such as Cr and Lns are multi-
electron systems, which can possess an even larger total spin
in the ground state than alkalis. For example, bosonic Cr
atoms have an electronic spin § = 3 in the ground state (L = 0),
while bosonic Dy and Er atoms have L=6,5=2 and L =
5,8 =2 respectively. Including the hyperfine structure for
the Fermi isotopes, one can reach, for example, F =21/2
using '®'Dy atoms. Besides the richer physics at the many-
body level, such large-spin atoms have also attracted atten-
tion for studying highly non-classical behaviours involving
quantum coherence and entanglement, either at the many,
few, or even single-particle levels [180, 181, 535]. These pro-
spects may have important implications and applications for
quantum information processing, sensing, or metrology pur-
poses. In particular, we note that a single magnetic atom
provides the realisation of large spin states (length F) in an
Hilbert space of relatively moderate size (2F + 1) and increas-
ing linearly with the spin size. In contrast, a spin of similar
length realised by a set of spin-1/2 particles lives in an Hil-
bert space whose size increases exponentially with the spin
length. The reduction of the Hilbert space offered by magnetic
atoms is beneficial to temper the effect of decoherence in the
system.

We note that, in atomic gases, research has also explored
small-spin systems, e.g. those involving only two spin states
to form an (effective) spin-1/2 system. Such a system can be
accessed either by considering a hyperfine level of F=1/2
(as for fermionic Li and K [377, 536-539]) or by isolating two
states of a larger-F level; see e.g. [540, 541]. For magnetic
atoms, however, isolation is complicated by the spin-changing
DDI; see also section 3.3. Nevertheless, as we have seen in
section 3.3.4, thanks to the quantum statistics, some subspaces
can be effectively preserved in spin mixtures of ultracold fer-
mions on long time scales because decay rates are strongly
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suppressed [164]. This is in particular the case for the sub-
space formed by the two lowest spin states of a fermionic mag-
netic atom. This feature has been used in experiments to study
effective spin-1/2 dipolar systems under the effect of an artifi-
cial SOC [251] and in bulk [313].

6.1.2. Spin-dependent one-body Hamiltonian for spinor
gases. In order to study pristine spinor physics, i.e. to isol-
ate the effects arising solely from spin-dependent interactions,
it is convenient to first consider a spin-independent one-body
Hamiltonian (typically the sum of a kinetic term and external
potential; see equation (9)). Using a spin-space generated from
the hyperfine level of an atomic species, the kinetic part of the
Hamiltonian is spin independent. Then one need only con-
sider the conservative trap confining the atoms. This potential
should be independent of the magnetic sublevels. For alkali
atoms, this is typically obtained by using ODTs created by far-
off-resonant focused laser beams, in which case the AC-Stark
shift is approximately independent of the magnetic sublevel
[245]. As discussed in section 2.3, the situation of magnetic
atoms differs. Both for Cr and for Lns, the large electronic
spin/angular momentum results in large vector and tensor
parts of the atomic polarisability. This yields a significant
dependence of the light shifts on the magnetic sublevel, even
when using light far away of optical transitions. Typically, this
is not negligible in experiments exploring dipolar magnetism.
It is then expected that spinor phases will be driven by an
interplay between spin-dependent interactions, the Zeeman
effect, and the tensor light-shift.

6.1.3. Spin-dependent interactions for large-spin atoms.  To
study of spin physics with large-spin atoms it is important to
recall that the interaction between the atoms can depend on
the spin channel S of the collision. Here, S describes the total
spin of two atoms and is preserved during the collision in the
absence of a DDI, see sections 2.4 and 3.

Quantum statistics plays a major role in selecting which
molecular potentials should be taken into account. Generally
speaking, regardless of the statistics of the particles involved,
S + I must be even, where [ is the relative angular momentum,;
see also section 3.1. For short-range interactions, s—wave scat-
tering dominates at low collision energy. Under these circum-
stances, only even S need to be considered, both for bosons
and fermions.

The different molecular potentials have identical multi-
pole expansion parameters at long distance where only elec-
trostatic interactions contribute. However, at short distance,
where electronic orbitals may overlap, quantum statistics also
plays a pivotal role. This is because the molecular potentials
associated with different spin channels are often quite differ-
ent. Therefore, different spin channels S typically correspond
to different scattering lengths as. This is clearly true in the
case of Cr because of the large electronic spin of the atom. This
leads to seven very different molecular potentials, as calcu-
lated in [542] and confirmed by experiments [161, 195]. Scat-
tering lengths are also (most likely) spin dependent in Lns.
Because the outermost electronic shell has zero spin (identical
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to the case in Yb), all molecular potentials have a similar shape
even at short distances. However, slight differences between
the molecular potentials (due to, e.g. orbital anisotropy of
unfilled submerged f-shell) are most likely sufficient to lead
to spin-dependent contact interactions [206]. As highlighted
in section 2.4, scattering properties of Ln are extremely diffi-
cult to predict, while, on the experimental side, spin-dependent
scattering lengths have remained unexplored in these atoms;
see also section 2.4.

In gases of large-spin magnetic atoms, there is, in addi-
tion to spin-dependent contact interactions, the DDI that must
be taken into account. Dipolar interactions are not only spin-
dependent, but they also induce direct SOC; see equations (3)—
(5). Indeed, when including the spin degree-of-freedom, the
DDI leads to two extra terms in the Hamiltonian. These are
in addition to the bare (yet also spin-dependent) elastic term
equation (3) that we have considered up till now. The first term
is the so-called spin-exchange term of equation (4): it changes
the spins of atoms at long distances while conserving the total
longitudinal magnetisation of the pair of particles. The second
term is the relaxation term of equation (5). This leads to a
change in magnetisation and converts spin angular momentum
into orbital angular momentum to conserve the total angular
momentum in the system, thus providing a form of SOC. Due
to this peculiar SOC, and to the long-range coupling between
spins, large-spin systems thus allow the exploration of mag-
netism beyond paradigms inherited from solid-state physics
in addition to beyond what could be achieved with ultracold
atomic gases up till now. Experiments can be performed both
with bosonic and fermionic isotopes (see section 2), greatly
enhancing the scope for new magnetic behaviour.

6.1.4. Mean-field spinor physics with spin-dependent contact
interactions.  Because of the spin-dependence of the con-
tact interactions described above, the Hamiltonian of a spinor
gas depends on the spin s of the interacting particles even
in the absence of a DDI. The Hamiltonian becomes increas-
ingly complicated for increasing s [93]. It is useful to exam-
ine the simplest case for what can be considered as a large-
spin system, i.e. one beyond the spin-1/2 case. This is the case
of s =1 atoms. In this case, only two spin channels exist for
the short-range interactions, S = 0 and S = 2, with the corres-
ponding scattering lengths as—¢ and as—;. In the Hamiltonian,
given by equation (13) within the MF picture, the difference
between the two scattering lengths is the key ingredient for
spinor physics, giving rise to a so-called c;-interaction term
with ¢; o« (az — ayp).

This spin-dependent interaction term for example results
in spin-exchange dynamics that is experimentally apparent by
monitoring the evolution of the population in the different Zee-
man states as a function of time. The spin-exchange processes
correspond to the Forster-like exchange of a spin excitation
(mg=0,m; =0) — (my=—1,m;=1) and are driven in the
MF picture at a rate:

41 2

Fexc X n<aS:2 - (15:0). (64)
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Spin dynamics has been widely studied in the community
for both Bose and Fermi quantum degenerate and thermal
gases [94, 534, 543-550]. More generally, the study of excit-
ations within a spinor condensate is expected to be very rich,
with a number of possible topological excitations observable,
such as line defects, point defects, skyrmions [551], and knots
[93].

Most importantly, spin-exchange processes associated with
contact interactions conserve the total longitudinal magnet-
isation of the pair of particles. This conservation stems from
the isotropy of contact interactions. A very important practical
consequence is that the linear Zeeman effect is gauged-out and
does not contribute to the dynamics or to the phase diagram.
Spinor phases are rather determined by the interplay between
spin-dependent contact interactions and the quadratic Zeeman
effect [94], leading to quantum phase transitions [545-547].
At low magnetic fields, where the quadratic Zeeman effect
may be neglected, the spinor ground state strongly depends
on interactions. For s =1, when a, < ay, the BEC is ferro-
magnetic (favouring collisions in the S=2 channel), while
the predicted ground state when ay < a, is polar [552, 553].
On the other hand, a large positive quadratic Zeeman effect
favours the polar state. As the spin increases, the wealth of pos-
sible phases makes spinor quantum gases a promising area of
research [93], including for the study of non-Abelian spinors
[156].

6.1.5. Beyond-mean-field spinor physics with spin-dependent
contact interactions.  One of the important features of spinor
gases is that quantum correlations can naturally occur, allow-
ing quantum fluctuations to play an important role. For
example, spin-exchange dynamics vanish at the MF level
when a spinor condensate is prepared in the initial state m; = 0.
Quantum fluctuations then drive the onset of spin dynamics,
with analogies to parametric amplification [550, 554, 555].
Atomic quantum optical effects lead to the generation of
entanglement [556], which may have important applications
for atom-based squeezing and atom interferometry [557].

Quantum fluctuations can also play a key role in determin-
ing the nature of the many-body ground state. A formal map-
ping to quantum optics was proposed by Law et al [558], who
showed that the ground state differs from MF predictions [552,
553], at least for mesoscopic systems. Depending on the sign
of the spin-dependent interactions, the ground state is strongly
degenerate (with spontaneous symmetry breaking likely), or a
condensate of spin-singlet pairs. So-called ‘fragmented BECs’
have also been studied by Ho and Yip [559], and were very
recently experimentally produced in [560].

While most of the experiments have been performed with
bosonic atoms, large-spin fermions are also a promising direc-
tion for research on large-spin systems. First studies have been
performed in Hamburg [534, 549]. These large-spin Fermi
systems possess increased spin fluctuations due to the large
spin [561], new SU(N) symmetries for purely nuclear spins,
as it is the case for Yb and Sr [562-566], BCS pairing with
a non-singlet character [567], and greater than two-particle
clustering [568].
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6.1.6. How are dipolar interactions expected to impact spinor
physics?  The impact of dipolar interactions on spinor gases
crucially depends on whether the dipolar field is larger or
smaller than the external magnetic field. For a large magnetic
field, magnetisation-changing collisions merely lead to atomic
losses, and therefore, within the dipole-relaxation-limited life-
time, the experiment is essentially performed at constant mag-
netisation. That is, it evolves under terms that conserve the lon-
gitudinal magnetisation in the dipolar Hamiltonian.

Because they are spin-dependent, the DDIs modify the
properties of spinor gases when they are not negligible com-
pared to spin-dependent contact interactions. To judge a priori
the impact of the DDI, one needs to compare the dipolar
length aqq to differences between scattering lengths [16]. As
a consequence, dipolar effects can be prominent even for the
case of alkali metal atoms, such as Na or Rb for which spin-
dependent contact interactions are much weaker than spin-
independent interactions. For example, the long-range and
anisotropic nature of the DDI introduces a nonlocal nonlin-
earity that can modify spin textures, as experimentally invest-
igated using alkali atoms [569, 570]. As we will see, dipolar
interactions also impact spin dynamics.

The modifications introduced by the DDI on spinor phys-
ics are even more pronounced when the magnetic field is not
large compared to the dipolar field. Then, the magnetisation-
changing terms in the dipolar Hamiltonian cannot be neg-
lected. Unlike contact interactions, the DDI, by allowing
changes in magnetisation, yields an intrinsic SOC which
breaks rotational symmetry; see section 6.1.3. It thus modi-
fies the classification of the possible spinor phases. The exact
nature of the dipolar spinor ground state phases at low mag-
netic field, which may depend on the trapping geometry and
other spin-dependent forces, is still a matter of theoretical
investigation; see for example [571] for the s =1 dipolar sys-
tem in the single mode approximation and [156, 157].

Spin—orbit coupling associated with the DDI corresponds
to the exchange between orbital angular momentum and spin
angular momentum. The DDI can, for example, trigger the
demagnetisation of a sample, leading to spontaneous rotation,
analogous to the Einstein—de-Haas effect [349, 351-353, 572,
573]. Furthermore, because of magnetisation-changing pro-
cesses, the dipolar spinor gas is sensitive to magnetic field,
which provides new ways to study phase transitions driven
by the interplay between spin-dependent interactions and the
linear Zeeman effect [350]. For example, it is expected that
a ferromagnetic spinor dipolar condensate may display spon-
taneous circulation in the ground state at low magnetic fields
[574].

In the following, we will describe the experiments that
address the role the DDI has played in spinor physics, distin-
guishing between the cases where magnetisation is conserved
from those where it is free to evolve.

6.2. Effects of dipolar interactions on spinor physics at
constant magnetisation

If the time-scales of dipolar relaxation are large compared to
the other relevant timescales in the system (see section 3.3),
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one can study spinor physics under the effect of the DDI but at
constant magnetisation. Here, the effect of the DDI arises from
the elastic term of DDI, equation (3), and the spin-exchange
term, equation (4). The intrinsic SOC introduced above is neg-
lected for now. The spin-dependent elastic DDI term impacts
the spinor physics because of its long-range and anisotropic
nature.

6.2.1. Dipolar-induced spin textures in BECs.  One of the
prominent features of the DDI, associated with its non-trivial
momentum dependence shown in equation (8), is a tendency
to develop spatial structures. This has already been discussed
in the spin-polarised case in sections 4.1.3.3, 4.1.4.3 and 5.
In the context of spinor dipolar gases, this tendency translates
into the possibility of developing various spin-textures [93],
i.e. inhomogeneous distributions of the spin vector.

The influence of the DDI on spin domains of Bose quantum
gases was experimentally studied both in Berkeley [569] (for a
Rb F =1 BEC with ferromagnetic contact interactions) and in
Tokyo [570] (for a Rb F =2 BEC whose contact interactions
disfavour ferromagnetism). In both experiments, spin domains
were created using a well-defined magnetic field gradient. In
[569], the spin textures decayed towards a spatially modu-
lated structure of spin domains. The crucial role of the DDI
was demonstrated by eliminating the DDI by a sequence of rf
pulses, in which case the authors observed a suppression of
the formation of the short-range domains. In [570], the spin
textures observed after propagation within the magnetic field
gradient are compared to numerical simulations of the GPE.
This reveals that the observed spatial modulation of the lon-
gitudinal magnetisation is due to the spin precession in the
effective magnetic field produced by the DDI. Both these res-
ults demonstrate that the DDI has considerable effect, even on
spinor condensates of weakly dipolar alkali metal atoms.

6.2.2. Gapped magnon excitations of BECs.  Phonon excit-
ations have been studied in the context of scalar BECs
through, e.g. Bragg excitation spectra [384-388, 575]; see also
section 4.1.3 for the dipolar case. Moreover, there exists, in
spinor BECs, spinfull excitations that also behave like qua-
siparticles. Surprisingly, these excitations remain relatively
unexplored experimentally. One of the first investigations was
performed at Berkeley on a ferromagnetic Rb BEC [576].
Magnon excitations were precisely studied and shown to con-
sist of a standing-wave of spin-excited atoms above a ferro-
magnetic BEC. While the Goldstone theorem predicts that
a ferromagnetic state has gapless excitations (for symmetric
interactions), a gap was measured and ascribed to the pres-
ence of a weak DDI that breaks rotational symmetry. Perhaps
related to this feature, the authors also observed a larger effect-
ive mass than expected by MF and BMF theories involving
only s-wave interactions. Although these effects remain small
due to the weakness of the DDI in alkali atoms, they provide
qualitative departures from the paradigms of magnetism in
the presence of symmetric short-range interactions. This con-
stitutes but one illustration of the possibilities dipolar spinor
gases offer.
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In the case of Cr, trapped magnon excitations were cre-
ated by applying, on a polarised BEC, magnetic field gradients
perpendicular to the magnetic field axis [260]. In that experi-
ment, the wavelength of the excitation is not small compared
to the cloud’s size. The magnons that are created are quant-
ised in energy, and manifest themselves as collective modes
that couple the spin and the orbital degrees of freedom. The
lowest energy mode, whose frequency is set by the zero-point
energy of the BEC, consists of a sinusoidal oscillation of the
local spin around its original axis, with an oscillation amp-
litude that linearly depends on the spatial coordinates. The
observations are in excellent agreement with hydrodynamic
equations. In the regime the experiment was performed, the
observed spin mode has a universal character, independent of
the atomic spin and spin-dependent contact interactions, and
is therefore rather insensitive to the DDI. It was nevertheless
predicted that dipolar interactions could alter such a mode,
provided that the atomic sample has a size larger than a natural
wavelength set by the DDI [260].

6.2.3. Out-of-equilibrium  spin  dynamics at constant
magnetisation.  Strong dipolar effects have been observed in
the spin dynamics of magnetic atoms even on time scales short
compared to the dipolar relaxation processes. Studies where
performed on S = 3 32Cr atoms, initially polarised in the lowest
energy spin state m; = —3, and after homogeneously quench-
ing a BEC into a spin-excited state. This was first performed
using an engineered tensor light shift to promote all atoms into
a well-defined Zeeman state m; = —2 [355]. In a latter exper-
iment, the spin excitation was performed by simply rotating
the spins using a rf pulse [257].

In both cases, out-of-equilibrium spin dynamics was mon-
itored by means of a Stern—Gerlach procedure to measure the
population of atoms in the different Zeeman states as a func-
tion of time. It was found that spin dynamics was driven by
an interplay between spin-dependent contact interactions and
DDI. Spin-dependent contact interaction played the dominant
role in the spin dynamics because they are relatively strong in
the case of 32Cr atoms.

In the case where the atomic spins are tilted compared to the
magnetic field by an rf pulse, it was nevertheless demonstrated
that initial spin dynamics were entirely triggered by the DDI.
This is a consequence of the SU(2)-symmetric nature of con-
tact interactions, which cannot trigger dynamics after a simple
rotation of the atomic spin initially in a stretched (ferromag-
netic) state. Therefore, the onset of spin dynamics after rota-
tion of the spins seen in [257] is a purely dipolar effect. Finally,
in the specific case where the spins were tilted by 7/2 com-
pared to the magnetic field, it was found that the spin dynamics
vanishes. The MF theory provides a natural explanation for
this phenomenon, as the torque associated with the inhomo-
geneous magnetic field carried by the atoms vanishes when
the magnetisation of each atom vanishes [577].

In the 7 /2 rotation case, spin-dynamics could be recovered
by applying a magnetic field gradient providing the neces-
sary SOC to trigger dynamics. It was then discovered that
spin dynamics develops while preserving the local spin length
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of the condensate [257]. This protection of the initial ferro-
magnetic character of the gas was attributed to an energy gap
provided by sufficiently large spin-dependent contact inter-
actions. This dynamical protection of ferromagnetism is the
reason why trapped magnon excitations could be observed
in the Cr experiments and described using the hydrodynamic
equation of a ferrofluid, indicating that the Cr BEC behaves
like a genuine ferrofluid; see section 6.2.2 and [260].

It should be noted that the protection of ferromagnetism in
the >2Cr condensates is tied to the relatively small strength of
the DDI compared to spin-dependent contact interactions; it
is likely that similar experiments performed (for example with
Ln atoms) in the regime where dipolar interactions overwhelm
spin-dependent contact interactions may lead to qualitatively
different behaviour, since the DDI does not preserve the spin
length. As we will see in section 7, working in optical lattices
is another way to investigate a purely dipolar spin system. In
this case, the collective spin length is indeed reduced during
dynamics [578].

6.2.4. Effective spin-1/2 mixture of dipolar fermions.  Bey-
ond the case of BEC described above, recent work has been
dedicated to the study of spinor systems of dipolar fermions
[164, 251, 313]. This system is of great interest for the study
of how the DDI affects superfluid pairing and the celebrated
crossover from delocalised Cooper pairs in the BCS regime
to a BEC of molecules [13, 127]. By choosing specific spin
mixtures, spinor gases of constant magnetisation can be stud-
ied over long time scales, even for highly magnetic species
of Er and Dy. This is due to the quantum statistical suppres-
sion of dipolar relaxation [164]; see also section 3.3.4. This
feature has been recently used to realise a long-lived spin-1/2
spin-orbit-coupled degenerate dipolar Fermi gas [251]. This
experiment will be discussed in section 6.4.1.

A spin-1/2 degenerate Fermi mixture of strongly magnetic
atoms '°’Er was created [313], and the collisional behaviour
of this mixture experimentally investigated. This experiment
used a deep 3D optical lattice as a tool during the prepara-
tion of the mixtures, which serves to inhibit collisional losses
induced by large magnetic field sweeps and the crossing of
numerous FRs: A quantum-degenerate spin-polarised sample
is first loaded into a deep 3D optical lattice at low magnetic
field, such that double occupancy are precluded and fermions
are spatial separated. The magnetic field can there be ramped
up to a value where quadratic Zeeman shifts are significant,
allowing spin state preparation using using rf sweeps, and
later be ramped down to the low-field region, where the phys-
ics of the spin mixture is studied. To do so, the 3D lattice
is slowly ramped down and the Fermi mixture loaded back
into a 3D trap. As already observed for the spin-polarized
case—see section 2.4)—the collisional properties of the spin
mixtures as a function of the bias magnetic field amplitude,
B, is marked by a large number of intra- and inter-spin FRs.
Baier et al [313] mapped the FR spectra for B in the [0,2]G
range via loss spectroscopy. Many narrow and overlapping
features are observed. A comparatively broad and isolated
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interspin FR is also identified. Baier et al used this resonance
to reach the strongly-interacting regime. Here, a large colli-
sional stability of the balanced spin-mixture at T/TF ~ 0.3 is
observed, in particular on the repulsive side of the FR. This
paves the way towards study of BEC-BCS physics in such
systems.

6.3. Spinor physics with free magnetisation

Besides the studies at constant magnetisation described above,
the DDI introduces fundamental new features due to the pres-
ence of magnetisation-changing collisions; see equation (5).
In this context, the linear Zeeman effect can impact out-
of-equilibrium physics and phase diagrams. In particular,
magnetisation-changing collisions can free the total magnet-
isation of a gas, so that the system now becomes sensit-
ive to the linear Zeeman effect. Different regimes may be
reached depending on the ratio of the Larmor precession
energy to other energy scales. A rather complex phenomen-
ology unfolds, depending on the Larmor frequency g,ugB/h
compared to the following energy scales; note that typical val-
ues are indicated on the right column for the specific case of
32Cr atoms and g; is the Landé factor:

Physical process Energy scale

Trap depth
Thermal excitations
Fermi energy
Spin-dependent

Uo/h = 500 kHz
ksT/h = 2.5 kHz
er/h=2.5kHz

Texe/h = 250 Hz

interactions
Trap frequency wr /27 =250 Hz
DDI Vdd/h =25Hz

T'exe was defined in equation (64).

e g;upB > Uy. Dipolar relaxation leads to (spin-sensitive)
losses.
e Uy > g;upB. Dipolar relaxation does not lead to losses, but
introduces heating. If g;ugB > kpT, most of the atoms are
polarised in the lowest energy state at equilibrium.
giupB ~ kgT > I'ex.. The thermal gas is spontaneously
depolarised, populating a few Zeeman sublevels at equilib-
rium. For bosons, Bose-stimulation insures that the BEC
remains polarised in the lowest energy state. However, for
Fermi gases, the DFG may be depolarised if gjupB < €p.
giigB < T'exe. A demagnetised spinor BEC may be pro-
duced provided spin-dependent contact interactions do not
favour a polarised BEC in the lowest energy state.
When g;upB ~ hw, the released energy due to dipolar
relaxation corresponds to one unit of excitation in the trap.
This is favourable for measuring the change in angular
momentum associated with dipolar relaxation; this is a
quantum gas analogue of the Einstein—de-Haas effect.
Reaching gyupB < V43 would be very interesting as the
dipolar field then overcomes the ambient magnetic field. The
(inhomogeneous) dipolar field itself sets the lowest-energy
spin-textures.
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Figure 32. Measured and predicted phase diagram of a spin 3 Cr
BEC. Three phases are observed: (A) thermal gas, (B) polarised
BEC in stretched state, (C) spin-full (depolarised) BEC. The
histograms show typical experimental population distributions.
Black triangles are the measured 7';. Solid lines shows the
predictions of T > in the non-interacting case. Dashed lines show
typical evolution predicted by theories with no interactions when the
temperature is lowered at a given magnetic field B, for two different
regimes depending on whether magnetisation is fixed (left curve) or
free (right curve). Reprinted figure with permission from [580],
Copyright (2012) by the American Physical Society.

6.3.1. Thermodynamics of a Bose gas with free magnetisation.
Thermodynamics of a Bose gas with a spin degree of freedom
is derived by including the single-particle magnetic energy in
the Bose occupation factor. For non-interacting particles,

1

~ ) kel =1 ()

Jem, =

exp [(exm,

where p is the chemical potential, and €, is the single-
particle energy of the (trapped) states labelled by the index
k, in the Zeeman state m,. When magnetisation is free (case
of dipolar particles) ¢ ,,, includes the linear Zeeman effect,
whereas when magnetisation is fixed (as for example of Rb
and Na atoms), the linear Zeeman effect is gauged out and € ,,,
includes only the quadratic Zeeman effect.

For the generic case of a F'=1 spinor Bose gas interact-
ing solely via contact interactions (and thus at constant mag-
netisation and without the quadratic Zeeman effect), the phase
diagram has been worked out by Isoshima et al [579] as a func-
tion of the temperature 7 and the magnetisation M. Two phase
transitions were predicted. The first transition, at a critical tem-
perature T (M) separates the normal phase, and a phase where
a condensate forms in the (most populated) stretched state.
Below a second critical temperature T, (M), all other spin com-
ponents condense simultaneously (see figure 32).
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First investigations of spinor physics with free magnetisa-
tion were performed using cold Cr atoms in an ODT. It was
observed that the spin degrees of freedom equilibrated to the
gas mechanical temperature [580]. At high temperature, the
population of the different Zeeman states followed a distri-
bution close to the Boltzmann distribution. The spin temper-
ature was equal to the mechanical temperature, and thermal
equilibrium between spin and orbital degrees of freedom was
ascribed to magnetisation-changing dipolar collisions. Below
the critical temperature for BEC, a spontaneous accumulation
into the Zeeman state of lowest energy was observed. This led
to a bimodal spin distribution, arising from BEC and the spon-
taneous accumulation of the atoms in the lowest-energy spin
state.

By varying the temperature and the magnetic field, it was
possible to map out the corresponding critical line T (M)
(see figure 32). However, the second predicted phase trans-
ition at T»(M) could not be studied. Indeed, when magnet-
isation is free, Bose stimulation towards the single-particle
lowest-energy state insures that the BEC is only produced in
this polarised state [580]. The second transition was recently
observed in the case of sodium atoms with negligible DDI
by Frapolli et al [581]. The authors also studied the impact
of spin-dependent interactions on the double-condensation
scenario.

In a later study, it was possible to reach a multicompon-
ent phase with Cr atoms by applying rapid, forced evaporative
cooling to a depolarised gas, thus performing the experiment
fast compared to the time scale for magnetisation-changing
collisions. However, the spinor BECs were very small due
an interplay between Bose condensation and spin dynamics
[582]. This result pointed out the difficulty of fully thermal-
ising the spin degrees of freedom. This is a prominent effect
to be taken into account for very large spin systems such as
Dy and Er where all spin states must be saturated for a stable
multicomponent BEC to be produced.

The connection between magnetic order and superfluid
order and the BEC transition is an intriguing question that
remains largely unexplored. While these orders are intrins-
ically connected due to Bose stimulation, it was predicted
that strong spin-dependent interactions induce spin ordering
at a finite 7 above the BEC transition [583]. In low dimen-
sions, the connection between magnetic order and superfluid-
ity promises to be especially interesting. In particular, in the
2D polarised case, superfluidity does not arise from con-
densation but by the pairing of vortices with opposite cir-
culation through the Berezinskii—Kosterlitz—Thouless mech-
anism. This gives rise to a topological order [81, 584-586].
The case of a depolarised gas promises new scenarios for
superfluidity, due to the existence of topological excitations
such as half-quantum vortices that include the spin degree of
freedom [587].

We note that the case of fermions will drastically differ
from the scenario described above due to the presence of the
additional energy scale provided by the Fermi energy. One
consequence is that spontaneous demagnetisation of a nonin-
teracting Fermi sea is expected provided the Larmor energy
is smaller than the Fermi energy (Pauli paramagnetism). How
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interactions modify this picture is an open question and con-
nected to Stoner instability.

6.3.2. Spontaneous demagnetisation of a BEC.  One of the
fascinating avenues of research for dipolar spinor physics
is the investigation of the zero-temperature phase diagram
at low magnetic fields when the Larmor energy is compar-
able to spin-dependent interactions. For the experiments per-
formed with alkalis, spin-dependent contact interactions are
extremely small compared to the linear Zeeman effect. In addi-
tion, the gas magnetisation remains constant for all practical
purposes because contact interactions are isotropic, and aniso-
tropic DDIs between alkali atoms are small. Consequently, the
true ground state of these system, with free magnetisation at
extremely low magnetic fields, has never been experimentally
investigated.

Quantum gases made of strongly magnetic atoms, on the
other hand, offer the new possibility of free magnetisation
introduced by the DDI. Moreover, spin-dependent contact
interactions provide an energy scale that corresponds to a mag-
netic field in the few 100 pG range for Cr atoms (compared to
10 pG for alkalis). It therefore becomes possible to investigate
phase transitions driven by the competition between the Zee-
man effect and spin-dependent interactions. For example, the
phase diagram of Cr atoms has been calculated (ignoring the
DDI) by [352, 588], and is expected to display a number of
transitions separating ferromagnetic, cyclic, polar, and biaxial
nematic phases as a function of the magnetic field. The phase
diagram of Ln atoms is unknown to the best of our knowledge,
though some have speculated [156]. We note that the case of
Lns may be quite different, because contact interactions them-
selves contain an anisotropy associated with the large elec-
tronic angular momentum in the ground state.

The exploration of the spinor phase diagram at very low
magnetic field was started with a Cr BEC in the B ~ 100 uG
regime [350]. While the BEC remains polarised in the lowest
energy single-particle state for large enough magnetic fields,
it was then shown that a dipolar BEC spontaneously depolar-
ises when the Zeeman energy is quenched below a (density-
dependent) critical value (see figure 33). It was furthermore
shown that, while the DDI was presumably too small to signi-
ficantly modify the observed phases, the dynamics of depolar-
isation was driven by dipolar interactions.

A number of open questions remain after the first results
described in [350]. One interesting question concerns the pos-
sibility of characterising the excitations that may be produced
when the phase transition is crossed. As magnetisation is
dynamically modified, the sample should start rotating, in the
spirit of the Einstein—de-Haas effect. Such rotation could not
be observed. However, simulations indicate that the threshold
for demagnetisation could originate in the resonant dynam-
ics associated with this exchange between spin and orbital
momentum [589].

Furthermore, the impact of the DDI on the phases at low
field also remains unexplored. Note that it would be especially
interesting to study the regime where the Zeeman energy is
smaller than the MF energy associated with the dipolar field,
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Figure 33. Absorption images of a Cr BEC held in a magnetic field
of (a) ImG, (b) 0.5 mG, (c) 0.25 mG, and (d) 0 mG =+ 100 uG.
These were obtained after Stern—Gerlach separation of the seven
Zeeman components. The BEC spontaneously depolarises when the
field is lowered below a critical value. Reprinted figure with
permission from [350], Copyright (2011) by the American Physical
Society.

which could provide a scenario for symmetry breaking and
modify the possible quantum phases [571]. The requirements
in terms of magnetic field, below 50 uG, are demanding, yet
within reach of state-of-the-art experiments [590].

6.3.3. New cooling methods

6.3.3.1. Demagnetisation cooling. ~ The coupling between
the spin degree of freedom and the orbital degree of freedom
due to the DDI also presents the possibility of exchanging Zee-
man energy and mechanical energy for cooling purposes. This
strategy, first suggested in [591], is based on the depolarisation
of a gas of trapped atoms. Similar to adiabatic demagnetisation
cooling, the coupling between the internal spin reservoir of
the gas and the external kinetic reservoir via dipolar relaxation
reduces the temperature of the gas. Although a single dipolar
relaxation event per atom is insufficient to significantly cool
the sample, it was suggested that optical pumping can bring
the atoms back into the initial state, cool the spin reservoir,
and begin a repeat of the cooling process.

Demagnetisation cooling of a gas of ultracold >>Cr atoms
was demonstrated soon after by Fattori ef al [592]. Demagnet-
isation was driven by inelastic dipolar collisions, and optical
pumping was used to magnetise the system and drive continu-
ous demagnetisation cooling. An increase of the phase space
density by one order-of-magnitude was demonstrated, with
nearly no atom loss. In [200], demagnetisation cooling of a
Cr gas was further studied in a deep ODT, which allowed the
exploration of a large temperature range and could access high
densities up to 5 x 10" m™3. An increase of two orders in
phase space density was shown, up to 1072, For Cr atoms,
inelastic collisions between one ground state atom and one
atom optically excited by the repumping laser was shown to be
the main process limiting the increase in phase space density.

Nevertheless, demagnetisation cooling offers a realistic
potential for reaching degeneracy by optical cooling only. In
particular, dysprosium or erbium atoms are good candidates,
due to smaller recoil energy (larger mass), and the existence
of narrow lines for optical repumping. In addition, the use
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of spin-changing collisions for cooling purposes may even
be used for non-dipolar particles using spin-exchange contact
interactions [593].

6.3.3.2. Purification of a BEC by spin-fitering. =~ Another
closely related cooling scheme, which is efficient below
quantum degeneracy, has been demonstrated by Naylor et al
[594]. This scheme also relies on redistributing population
between different spin states, with free magnetisation. The
key idea is that only non-condensed atoms may populate spin-
excited states since Bose thermodynamics enforce a fully
polarised condensate; see section 6.3.1. Therefore, expelling
spin-excited atoms from the trap provides a way to engineer
losses specific to non-condensed atoms, thus cooling and puri-
fying the condensate.

The scheme, experimentally demonstrated using >Cr
atoms, starts with a partially condensed Bose gas polar-
ised in the lowest energy spin state. Demagnetisation of the
thermal component is triggered by lowering the magnetic field,
such that the Larmor energy is comparable to the thermal
energy. Then, the spin-excited thermal components produced
by magnetisation-changing collisions are filtered out by a
magnetic field gradient. It was found that when the initial BEC
fraction is high enough, this scheme ends up with a polarised
BEC in the lowest energy state with an increased BEC frac-
tion. This provides a thermodynamic cycle that, in principle,
decreases the entropy by a factor of up to (2s + 1)3/ 4 (where
s is the atomic spin), and could also be in principle repeated.
The obtained reduction in entropy was typically a factor of 2
for one cycle in the Cr experiment.

In the experiment, technical limitations arose from the diffi-
culty to control the magnetic field at very low values. This lim-
itation is directly related to the fact that dipolar gases are sens-
itive to the linear Zeeman effect. It was suggested in [594] that
the purification of a BEC by spin-filtering could be extended
to non-dipolar species by using spin-dependent contact inter-
actions and spin-exchange interactions. Both the dipolar and
the non-dipolar cooling schemes were theoretically explored
in [595]. A related cooling scheme was demonstrated with Rb
atoms [596].

Note that, despite their highly magnetic character, such
cooling techniques could be difficult to apply to Lns, because
the Feshbach spectrum of these atoms might be too dense at
low field, below typically 10 mG. Up to now, these techniques
haven not yet been reported using Ln species.

Both approaches described here are ways to use the spin
degrees of freedom to efficiently store and remove entropy
from a gas. We point out that ideas using the spin degrees of
freedom have already been developed in the context of lattice-
based large-spin Fermi gases [565], mixtures of Bose gases
[597], and Bose and Fermi gases [598]. Alternatively, it has
also been suggested that the spin degrees of freedom, and/or
spin-changing collisions, may be employed for thermometry
purposes down to extremely low temperatures. Such temper-
atures are typically impossible to measure in BECs with usual
thermometric techniques [596, 599].
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Figure 34. Comparison of demagnetisation cooling and spin
filtering. (a) Demagnetisation cooling. Spin-changing collisions
transfer kinetic energy of the most energetic atoms to magnetic
energy, allowing a net cooling of the remaining atoms. Optical
pumping can bring back spin-excited atoms to the initial spin state,
enabling continuous cooling with no atom loss (graph). Reproduced
from [592], with permission from Springer Nature. (b) Spin
filtering. In presence of a condensed Bose gas, spin-changing
collisions affect only thermal atoms that can then be selectively
removed. This removal of entropy results in the cooling of the
remaining gas and an increase of the condensed fraction (graph).
Reprinted figure with permission from [594], Copyright (2015) by
the American Physical Society.

6.4. Light-induced spin-dependent Hamiltonians in dipolar
gases

Apart from their large DDI, the large spin and rich elec-
tronic properties of highly magnetic atoms open interesting
directions to explore spin-light coupling; see sections 2.2.1
and 2.3. The wide variety of transition linewidths allow spin
manipulation with reduced heating and the strong vector and
tensor parts of the atomic polarisability allow the strong coup-
ling of the electron’s angular momentum to light; as detailed
in section 2.3. These higher-rank polarisabilities are intrins-
ically stronger in magnetic atoms due to their larger L and
S values. In addition, in the case of Lns, LS coupling occurs
in the electronic ground state itself. This is in contrast to the
case of alkali atoms for which spin-dependent coupling to
light occurs only through the mediation of the excited elec-
tronic levels. This yields a different scaling of the vector and
tensor polarisabilities with the detuning of the laser to the
atomic transition, A,: scaling as o A; ! and oc A% in Lns and
alkali-metals, respectively [157, 259]. This makes Lns prom-
ising candidates with which to implement spin-dependent
Hamiltonian tailored by light. Indeed, even if such synthetic
spin-dependent Hamiltonian have been realised with alkali-
atoms, they have been subjected to strong heating associ-
ated with incoherent light scattering. As a result, some of the
most interesting regimes could not be reached with long-lived
gases.
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6.4.1. Synthetic spin-orbit coupling in gases of magnetic
atoms

6.4.1.1. Synthetic spin-orbit coupling and artificial gauge
fields.  The coupling of a particle’s momentum and spin
underlies many important phenomena in quantum systems,
and in particular in electronic, solid-state systems [600]. For
example, topologically nontrivial materials often require the
coupling of the electron spin to momentum [601, 602]. Here,
SOC typically arises from the movement of electrons through
the crystal electric field. The effect of a magnetic field on
charged particles also yields intriguing phenomena, the most
famous of them being the quantum Hall effect [603]. This
effect has its roots in the special form of the Lorentz force,
which, at a quantum level, yields a kinetic term of the form:

[p—A®®)

I:I =
k o (66)

where p is the canonical momentum and A(F) is the vector
potential or gauge potential. Even more exotic behaviour, such
as the fractional quantum Hall states [604], Laughlin liquids
[605], and topological superconductors harbouring Majorana
excitations [151] can arise if A(F) is not just a classical vec-
tor (i.e. three complex numbers), but a set of three operators
A (F), A, (F), and A (F) that do not commute. This yields a
non-Abelian field.

Interestingly, ultracold atoms enable the combination of
SOC and gauge potentials by the engineering of a realisa-
tion of equation (66). This mimics the effect of a Lorentz
force on neutral matter while, additionally, the set of operat-
ors A; connect to the atomic spin operators. If realised in high
dimensions (i.e. greater than one), non-Abelian gauge fields
may then be synthesised. This technique relies on laser-field
dressing [160]. In the following, we will review this SOC pro-
tocol and discuss its extension to magnetic atoms. We note
that several other strategies, not connected to SOC, have been
developed over time to realise artificial gauge fields on neutral
atoms, e.g. by engineering trap rotations [606].

As introduced in section 1.3.3, and reviewed in detail in the
above section 6.3, the DDI provides intrinsic SOC through the
dipolar relaxation terms of equation (5). However, this is not
generally the sort of SOC that results in the physics of arti-
ficial gauge fields mentioned above. It gives rise to an inter-
action term that does not conform to that of equation (66).
(See [354] for a method that does.) In contrast, light-induced
SOC schemes applied to ultracold quantum gases do realise
a Hamiltonian term of the form of equation (66). The basic
idea can be formulated as follows: Light fields are applied to
couple Zeeman sublevels via a two-photon Raman transition.
Recoil momentum is transferred as the optically coupled spin
flips. The adiabatic evolution of these dressed states as the
atom moves in the Raman field creates a synthetic gauge field
[607]. This field provides SOC when these states form a (near)
degenerate manifold. The general form of the SOC Hamilto-
nian under the 1D Raman coupling along the direction x of two
Zeeman ground states is:
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where 6, . are the Pauli spin matrices. {2 and A are the
two-photon Raman Rabi frequency and detuning, respectively.
The form of this coupling is the sum of Rashba (k.0 + k,0,)
and Dresselhaus (k.o, — ky0,) SOC with equal weights. The
resulting dispersion relation is of the form of a double well
centred at k=0, as is typical of SOC systems. That is, the
momentum of spin up atoms is oriented in the opposite dir-
ection from that of spin down atoms. In the 1D case described
by equation (67), AZ = hké, and Ax,y =0, which does not
describe a non-Abelian coupling because the single compon-
ent of A commutes with itself. Generalisations to 2D and 3D
with a truly non-Abelian gauge potential have been proposed
[160] and realised in the case of 2D SOC [608, 609].

6.4.1.2. Spin-orbit-coupling in quantum gases: limitations and
prospects.  Spin—orbit coupling in BECs [147, 610] and
DFGs [609, 611, 612] of alkali-metals have been achieved.
However, heating due to spontaneous emission is severe.
This arises because Raman coupling is not very efficient
compared to spontaneous light emission due to the gener-
ally weaker tensor versus scalar polarizability. The optimal
ratio of Raman coupling to spontaneous emission occurs
at a Raman-laser detuning approximately equal to the fine-
structure splitting [613]: alkali’s small fine structure splitting
implies a large spontaneous emission rate if sufficiently strong
coupling strengths are to be achieved. The heating from spon-
taneous emission leads to loss of quantum degeneracy and
atomic population and the short lifetimes severely hamper the
study of quantum many-body phenomena.

We note that lattices of fermionic alkaline-earth atoms
[614—616] have also been used in SOC experiments. However,
optical lattice confinement and inelastic collisions [617-619]
among atoms limit the future ability to explore a wide variety
of many-body phenomena.

By contrast, [157] suggested that fermionic open-shell Ln
atoms like Dy and Er might better serve due to their large
orbital angular momentum and narrow-line transitions. Spon-
taneous emission can be eliminated while still producing large
Raman coupling even without lattice confinement or narrow
lines because their ground-state orbital angular momentum
is L>0. This is due to the fact that the vector and tensor
polarizabilities that factor into the Raman coupling scale as
the inverse atomic detuning A, ! of the Raman lasers from
the atomic transitions in these systems, as opposed to the
faster A2 scaling in alkali-metals once A, exceeds the fine-
structure splitting [259, 620]. Thus, in open-shell Lns, one can
always choose a detuning that provides a large Raman coup-
ling 2 while minimising heating from incoherent scattering
[157]. The realisation of long-lived SOC Fermi gases would
open new avenues to experimentally study topological matter
not easily realisable in the solid state [147, 159, 160, 621, 622].
For example, one could create and study topological superflu-
ids and exotic quantum liquids [147-154] in a well-controlled
manner.



Rep. Prog. Phys. 86 (2023) 026401

Review

6.4.1.3. Spin-orbit-coupling in assemblies of magnetic
atoms.  Burdick et al [251] first reported the realisation of
SOC in DFGs of Ln atoms using Dy. The SOC was induced
using Raman light near the 741 nm transition. Its 1.8 kHz
width reduces spontaneous emission rates below the back-
ground lifetime of the gas with only modest ~GHz detuning,
which is large compared to the hyperfine splittings, but smal-
ler than the fine-structure; see [214, 238]. The lifetime of
SOC gases was then limited, not by spontaneous emission,
but rather by dipolar relaxation.

Due to the suppression of inelastic dipolar scattering (see
section 3.3.4 for details), relatively long-lived SOC Fermi
gases could be realised while working at a bias field of a
few tens of G. Such magnetic fields were required, not only
because the suppression effect scales as /B, but also because
the isolation of an effective pseudospin 1/2 requires a large
the quadratic Zeeman shift obtainable only at large B. How-
ever, as discussed in section 2.4, the extreme density of FRs
in fermionic Lns, increasing with B, complicates the situation,
and [251] even reported the overlapping of resonances at these
fields. Nevertheless, a field region at 33.846(5) G was found
that allowed fermionic spin mixtures to live enough to allow
spin-orbit coupled '*'Dy gases to be created with a lifetime
of ~400 ms at a Raman coupling strength of A2 = 1Eg; see
figure 35(b). At this field, quadratic Zeeman shifts ensures
that the Raman fields couple only the mp = —21/2 and mp =
—19/2 states, providing maximum fermionic suppression of
dipolar relaxation; see figure 35(a). Note that by contrast, the
lifetimes of SOC “°K and Li were lower by ~10 and 100,
respectively [609, 611, 612]. Moreover, the SOC '¢!Dy life-
time is similar to that of free-space bosonic SOC alkali gases
[610] and ~10x longer than that achieved in a bosonic lattice
system [623].

Burdick er al [251] also reported that Raman-coupled
bosonic Dy has a short lifetime of less than 10 ms at low B
field. This is just as short as °Li, demonstrating the importance
of fermionic statistics in preventing fast relaxation. Finally, the
effect of dipolar interactions on Rabi oscillations was observ-
able, highlighting the interacting dipolar character of the fer-
mionic SOC system.

6.4.14. Dipolar relaxation of Raman-dressed spins.  The
physics of dipolar relaxation of Raman-dressed spins dif-
fers from the scenario of equilibrium gases described in
section 3.3. While one might suppose that atoms colliding in
dressed spins are identical—the spins are just rotated on the
Bloch sphere—and should therefore enjoy the full suppression
of identical fermions (see section 3.3.4), this is not the case
for SOC fermions. Since spin is locked to momentum, atoms
colliding with different momenta along the 1D SOC axis no
longer behave as identical particles (they have different spin
states) [251].

Although dipolar relaxation along the 1D-coupling axis
proceeds unhindered, not all is lost: dipolar relaxation remains
suppressed for collisions with momenta aligned primarily
along axes transverse to the SOC coupling. A simulation of
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Figure 35. Spin-orbit-coupling of fermionic '*'Dy. (a) Coupling
scheme for '®' Dy at a magnetic field high enough that the lowest
two Zeeman states are isolated by the quadratic Zeeman shift. J is
the two-photon Raman detuning and wy is the Zeeman splitting.

(b) Momentum distribution after removing the coupling and
separating the spin states with a magnetic field gradient.

(c) Quasimomentum dispersion curve for the spin-orbit-coupled
cloud in (b). The solid horizontal line indicates the Fermi energy. (d)

Experimental lifetimes for a gas of 1 x 10* '®'Dy atoms with
T/Tr = 0.4. Reproduced from [251]. CC BY 4.0.

these effects shows that in terms of relaxation rate, the gas
neither behaves as identical fermions enjoying full dipolar
relaxation suppression, nor as distinguishable particles, but
roughly halfway in between [251].

Dipolar relaxation remains a nuisance when coupling more
than two spin states together, since such spin states are not
protected. In [164], the lifetime of SOC Dy gases at low fields,
around 1 G, were observed to be of around 10 ms, for bosons as
for fermions. Thus, SOC in dipolar gases are limited to high
fields, setting limitations on the realisation of certain exotic
many-body states [157, 624-626].
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6.4.1.5. Realisation of a synthetic quantum Hall system using
magnetic atoms.  Chalopin et al [627] reported on the real-
isation of the equivalent of a quantum Hall system, i.e. that dic-
tated by equation (66), with Ax(f‘) = eBy, Ay(f') =0, using Ln
atoms. This achievement relied on SOC in one spatial dimen-
sion (x), using light near the 626 nm transition, and the coup-
ling all the spin states of bosonic Dy, where the large electronic
spin J = 8 of Dy was interpreted as a synthetic dimension (y),
i.e. J. <+ $. The SOC Hamiltonian, similar to (67), can then
be interpreted as the Hall equivalent formulated above [154].
Similar work has been performed using non-magnetic atoms,
yet bulk properties remained elusive due to the narrowness of
the synthetic dimension used [614, 616, 628, 629]

In this work, Chalopin et al demonstrated that their sys-
tem shows distinct sectors with respectively bulk and edge
behaviours in the ground band. This demonstrates the relev-
ance of large spin Lns systems to realise quantum many-body
systems with non-trivial topology. The observed behaviour in
each sector of the ground band are reminiscent of Landau-
level physics: in the bulk, dynamics is suppressed due to the
flatness of the band. In contrast, the edge modes exhibit a
ballistic dispersion, yet with a motion allowed in one direc-
tion only, i.e. showing chirality. The authors also character-
ised the elementary excitations above the ground band and
directly observe cyclotrons orbits, in the bulk, and skipping
orbits at the edges. The cyclotron gap is roughly constant
over the bulk sector and the corresponding frequency is large
(=40 KHz) compared to both the decay rate (see above) and
the temperature scale. Finally, the Hall response of the ground
band was measured, by applying a potential difference in the
synthetic dimension. The response shows a characteristically
nearly quantised behaviour, with a Chern number of nearly
one in bulk and a vanishing mobility in the edge sectors. This
is suggests the topological protection of the edge states. While
the limited lifetime of the bosonic system due to dipolar relax-
ation may hamper the exploration of some many-body physics,
this results helps to establish Ln SOC systems as promising
platforms for the realisation of synthetic topological quantum
many-body states.

6.4.2. Synthetic spin-dependent interactions in gases of mag-
netic atoms and generation of entangled quantum states. In
recent works using ultracold bosonic gases of 19Dy and ' Dy,
a spin-dependent Hamiltonian was generated using laser light
close to the 626 nm atomic line [180, 181]. The laser field
has a linear polarisation along x while the magnetic field
points along z. The resulting atom-light interaction yields an
effective coupling term hw])% with J being the total atomic
angular momentum. This scheme, similar to that previously
investigated with a large ensemble of room temperature Cs
atoms [535], realises a so-called one-axis twisting Hamiltonian
[155], which has also been investigated in many other systems
[630-633]. Typical coupling strengths w are on the MHz scale
and can be made to greatly exceed the kHz-scale Larmor pre-
cession frequency as well as the dipolar relaxation rate.
Highly non-classical spin states could be generated under
the effect of this coupling term [155]. Chalopin et al [180]

66

experimentally demonstrates the creation of Schrodinger cat
states resulting from the coherent superposition of the two
stretched spin states | £J). In contrast to ensembles of s =
1/2 particles, for which entanglement can only be gener-
ated between different atoms of the ensemble, here the non-
classical states arise because of the entanglement between
electrons within each individual atom [535]. This possibility
is a key feature provided by large-spin systems. These states
appear in the time evolution of the atomic spin (at the single
particle level) after a quarter of coupling period, T =27 /w.
Furthermore, several revivals of the cat state spaced by T/2
as well as a repolarisation into the Fock states |J) and | — J)
at intermediate times (half integer multiples of T') occur dur-
ing the time evolution. Coherence is seen to decay under
the effect of classical B-field noise, to which the cat state is
more sensitive than a classical (coherent) state. Nevertheless,
the cat state’s lifetime reaches up 60us. Focusing on a sim-
ilar dynamics but shorter time scales (set by 7 = 1/ (v2Jw)),
[181] probes the formation of non-Gaussian ‘oversqueezed’
states.

7. Magnetic atoms in strongly confined geometries:
low-dimensional gases and lattice systems

Up to now, we have discussed bulk dipolar effects, i.e. that
which happens in assemblies of atoms free to move and col-
lide in space, both in the fully polarised case (sections 4 and 5)
and considering additionally the spin degree of freedom (see
section 6). A complementary trend has developed in the com-
munity, loading atoms in strongly confined geometries, either
using tight anisotropic traps or periodic potentials made by
light standing waves (so called optical lattices) [7, 8, 128, 634,
635]. This has proven to be a new platform to achieve the
strongly interacting regime and investigate interesting open
questions in quantum many-body physics [7, 8, 127, 128, 635—
637]. In this section, we discuss the new physics arising from
loading highly magnetic atoms in strongly confined geomet-
ries, focusing on the experimental achievements to date. In a
first part we discuss the case of dipolar gases effectively con-
strained to a one-dimensional (1D) space, using a two dimen-
sional optical lattice. In this case, the atomic motion remains
free in the direction transverse to the lattice, realising an array
of 1D gases. In a second part (section 7.2), we discuss the
new physics brought by the long-range and anisotropic dipolar
interactions in a spin-polarised sample in 3D periodic poten-
tials. In this case, the atomic motion occurs in direction in
which the external potential is a lattice, realising Hubbard-
like models. In the third part (section 7.3), we still consider
3D periodic potential but additional allow for an internal spin
degree of freedom, relating to the very broad topic of quantum
magnetism.

71. One-dimensional dipolar gases

By using tight traps in one or two directions of space, the
motion of ultracold atomic gases is constrained, reducing the
dimensionality of the system. Such systems have been studied
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in contact-interacting gases [81, 126]. In this section, we focus
on 1D gases of magnetic atoms and describe the new behaviour
resulting from strong DDISs.

The physics of interacting quantum particles in dimen-
sions higher than 1D is often reducible to an effective descrip-
tion of non-interacting quasiparticles composed of the ori-
ginal particles ‘dressed’ by their interactions. The excitations
of such a system are nearly single-particle-like. That is, as we
have seen in section 4.1, MF and Bogoliubov treatments are
often adequate for bosons, while high-dimensional fermionic
systems are accurately described by the celebrated MF Fermi
liquid theory of Landau [638, 639]; see section 4.2.

Many-body quantum physics in 1D is far more strange.
Particles, being constrained to move on a line, cannot avoid
each other, and so all excitations are collective in nature.
Moreover, quantum fluctuations play a large role in determin-
ing how the system may organise; e.g. strong fluctuations pre-
vent the establishment of long-range order [124]. Fermi liquid
theory is no longer applicable in 1D. Instead, Tomonaga—
Luttinger liquid theory captures the low-energy physics of
both interacting fermions and bosons [126]. For example, it
describes the strange phenomenon of the spin-charge separa-
tion of excitations: excitations fractionalise into spinons that
carry spin but no charge, and holons that carry charge without
spin [126].

The role of quantum statistics also changes in 1D. Because
particles can no longer exchange their positions without under-
going a collision, strongly interacting fermions behave like
bosons and vice-versa, at least for some local observables like
the density distribution. Indeed, the Lieb—Liniger model for
contact interacting bosons,

Hppy = — Z

atoms

n P
2m Ox2

—&-ng(;(x)»

pairs

(68)

describes how the physics of bosons map onto that of free fer-
mions in the limit of infinitely strong interactions (gp — )
[640]. The coupling strength g;p is approximately related to
the 3D scattering length a through gip = 2h*a/ma? , where
ay =+/h/mw, and fuw | is the excitation energy of the tightly
confined directions perpendicular to the 1D axis [641]. For the
system to be considered within the 1D regime, fiw; should be
much larger than the chemical potential of the gas (.

The bosonic wavefunction describing the system in the
g1p — oo limit, referred to as a TG gas, is equal to the abso-
lute value of a fermionic wavefunction [139, 640]. The ‘fer-
mionised’ bosons repel each other strongly enough that their
two-body correlation function g(® (0) vanishes just like that of
identical fermions—repulsion in 1D mimics the effect of the
Pauli exclusion principle. The TG regime is reached when the
Lieb-Liniger parameter,

v =mgip/niph’, (69)
is much greater than one; n|p is the 1D density. Intuitively,
compares the mean interparticle distance 1/n;p to the length
scale 72 /mgip over which the repulsive interaction ‘bends’
the wavefunction. In this high-y regime, the density-density
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Figure 36. Red line is the 1D DDI, while dashed line is the 3D DDI.
The 1D DDI approaches the 3D curve at large normalised distance
u = x/a . Unlike the 3D divergence at short range, the 1D DDI
assumes a finite value. Reproduced with permission from [667].

correlation g® (x = 0) — 0, i.e. the quasiparticles antibunch,
as expected from their fermion-like character.

There exist even more exotic states, such as the super-TG
(sTG) gas. These highly excited states are characterised by
stronger-than-ideal Fermi gas correlations. Such gases can be
accessed by quenching g;p from 400 to —oo, as has been
observed in Cs and Dy [141-143, 642-6441]; see section 7.1.3.

Many aspects of 1D fermionic systems have been explored
in the condensed matter setting [645], and bosonic 1D gases
have been realised and studied both near and below the TG
limit using ultracold atomic gases confined in arrays of 1D
optical potentials using 2D optical lattices or in magneto-
static potentials from atom chips [139, 640, 646-651]. Sev-
eral characteristic properties have been observed, including
antibunching [652, 653]; unusual transport [654]; quantum
integrability (i.e. the existence of an extensive number of
integrals of motion) [655]; long-lived metastability of a sTG
gas [142]; pinning quantum phase transitions [656]; unusual
excitation spectra [657, 658]; velocity of sound [659]; and
rapidity (i.e. quasiparticle momentum) distributions [660].
One-dimensional Fermi gases have also been created with
excitation spectra consistent with Luttinger liquid theory [566,
661].

Dipolar interactions enrich the physics accessible with 1D
gases. Theoretical results have primarily focused on purely
dipolar quantum gases, in which the only interaction comes
from the DDI [137, 138, 662—-666]. Various effects of the DDI
have been predicted, in particular including increased correla-
tions of akin to sTG gases, or even crystallisation in the ground
state.

711 The effective quasi-1D DDI and realisation of 1D dipolar
gases. In a quasi-1D geometry, the external motion of the
atoms is effectively frozen in two directions when Aw, >
kg, . The effective form of the DDI in quasi-1D geomet-
ries can be derived from the 3D expression, equation (1), by
integrating out the transverse degrees of freedom, as shown in
[136-138]. Under a single-mode approximation, this yields:
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Here, u = x/a, , and erfc(u) is the complementary error func-
tion. There are two contributions to the short-range part of the
1D DDI. The first is the d-function term. It comes from the
point limit of an extended dipole [668] and has an opposite
sign to V'P(u). The second contribution is an effective delta-
function term that arises from the fact that V!P(x) becomes
more sharply peaked as a shrinks [137, 138]. At distances
|x| >a,, V'P(u) — 4/|ul>. This x=3 long-range potential is
just like the DDI in 3D, but with diminished magnitude at
ranges on the order of @ | . Within a distance set by a , the DDI
ceases to seem 1D to atoms that approach near each other. The
underlying 3D spatial nature is manifest and a small attractive
(repulsive) contribution to the DDI emerges from the part of
their wavefunctions that extend transversely by a | , even if the
long-range interaction along the 1D axis is repulsive (attract-
ive) [137, 138].

The DDI in 1D thus has both long and short-range
components [137, 138, 662]. The chemical potential remains
intensive in 1D, which is indicative of a short-range interacting
system. However, like a long-range interacting system, there
is no asymptotic phase shift (scattering length) that can be
defined for two-body collisions in 1D [662]. Away from colli-
sional resonances, the short-range part of the DDI can add to
the van der Waals contact pseudopotential to yield a total hard-
core contact interaction strength gp, as considered in [140,
669]. In addition to the FR-tunability of the van der Waals con-
tact interaction (discussed in previous sections), the 1D DDI
provides wide tunability in the properties of 1D many-body
systems because both the short and long-range parts of the DDI
in 1D can be set to a positive or negative sign, or made to com-
pletely vanish at the magic angle 6,, = 54.7°.

Dipolar 1D gases have been created by loading BECs of
either 32Cr or 9Dy into 2D optical lattices creating arrays
of 1D tubes [140, 162]. In this geometry, the DDI affects
different aspects of the interactions: (a) the dependence of
g1p(0) on the short-range component of the 1D DDI; (b) the
intratube long-range DDI; and (c) the mutual long-range DDI
of atoms in nearby tubes. The intertube DDI does not change
the dimensionality of the system, but rather is a multichan-
nel effect that couples different flavors of 1D quasiparticles
[140]; i.e. coupled 1D systems remain 1D because the phase
space degrees of freedom are still 1D when there is no trans-
port between tubes.

The first experimental work with 1D dipolar gases used
Cr and explored magnetisation-changing collisions and their
suppression in 2D optical lattices [162]; see figure 6 and
section 3.3.5 for more details. The first experiments with
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strongly interacting gases entering the fermionised ~>1
regime used Dy with ~50 Dy atoms per tube [140].

712. Thermalization in a dipolar quantum Newton’s cradle.
Tang et al [140] investigated the thermalization of a near-
integrable quantum system. The Lieb-Liniger model is an
example of a quantum integrable Hamiltonian, in which there
exists an extensive number of conserved quantities, resulting
in regular, non-chaotic, non-thermalizing dynamics for any
value of gp [139, 640]. This is due to the 1D geometrical con-
straint imposed on interactions: two-body interactions permit
non-diffractive scattering between nearest neighbours only,
leaving the set of incoming momenta unchanged with respect
to the set of outgoing momenta [670]. As a result, the scatter-
ing matrix obeys the Yang—Baxter equation, a sufficient con-
dition for integrability [640, 670-672], since the binary colli-
sions are unable to alter the distribution functions. Therefore,
an empirical ‘smoking gun’ for integrability would be the per-
sistence of an out-of-equilibrium momentum distribution bey-
ond the intrinsic dynamical time scale.

The group of David Weiss at Penn State University
observed this persistent non-equilibrium momentum distri-
bution in 1D gases of contact-interacting Rb atoms, thereby
experimentally establishing the integrability of the Lieb—
Liniger model. Their experiment relied on quantum quenches
using what they called a ‘quantum Newton’s cradle’ [655]:
atoms in 1D traps were set in motion using a Bragg diffrac-
tion pulse as a system quench. The atoms oscillated in coun-
terpropagating packets and collided twice each period under
the strong-coupling condition of > 1. This is akin to the
desktop Newton’s cradle toy, except that instead of the metal
spheres reflecting upon each collision, the Rb atoms could also
pass through one another as a manifestation of the quantum
nature of the system. Rather than rapidly come to a steady
state (i.e. a stationary Gaussian momentum distribution), the
packets were observed to oscillate many times (far longer than
what one would expect in a 3D gas) before the onset of heating
from spontaneous emission. Thus, the Weiss group established
that a strongly interacting integrable quantum system could be
studied in the laboratory. Although both longitudinal confine-
ment and transverse (virtual) motional excitation break integ-
rability, these detrimental effects are suppressed in the v > 1
regime [673-675].

Tang et al [140] used the magnetic DDI in a 1D Dy gas as
the controllable interaction with which to break integrability
in a dipolar version of the quantum Newton’s cradle experi-
ment. It is known from classical physics that magnetic spheres
cause the motion of a toy Newton’s cradle to be chaotic
due to the long-range interaction; the long-range DDI should
likewise break integrability in the quantum systems, since it
allows for ‘diffractive’ collisions among atoms. Indeed, the
DDI allows for ‘diffractive’ collisions among atoms: i.e. in
addition to two colliding atoms swapping their momentum, as
in the case of contact collisions (which are non-diffractive),
their momentum may also be imparted to a third particle. This
violates the Yang—Baxter condition, and hence breaks integ-
rability. Since the DDI strength falls off slowly in space, the
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Figure 37. (a) An array of 1D tubes for Dy atoms is created by a 2D
optical lattice. (b) Cartoon of dipolar quantum Newton’s cradle.
Dipolar Dy atoms are made to collide within the 1D tubes (only one
in the array is shown). The dipolar interaction is controlled by an
external magnetic field making an angle 6 with respect to the 1D
axis along y. This provides a knob with which to control this
integrability-breaking interaction.

probability for a diffractive interaction is not suppressed by
the usual need for three particles to be at the same place at
once. Furthermore, by simply controlling 6, the strength of
the integrability-breaking perturbation can be tuned. Figure 37
depicts the dipolar quantum Newton’s cradle.

The dipolar quantum Newton’s cradle opens new avenues
to explore how quantum thermalization arises upon the intro-
duction of a perturbation that lifts integrability. For example,
theoretical consensus is lacking regarding whether relaxation
involves two distinct timescales or three for strongly interact-
ing quantum near-integrable systems (i.e. first prethermaliz-
ation, then a prethermal plateau of a near steady-state preth-
ermal state, and finally a decay to the thermal state) [676—681].
More generally, thermalisation of a near-integrable system is
an old question with a celebrated answer in the realm of clas-
sical physics [682]. In the 1950s, Kolmogorov et al developed
what became known as KAM theory, establishing that chaos,
and hence thermalization, sets in as a smooth crossover as
the strength of a nonlinear, integrability-breaking perturba-
tion is increased [683]. In the quantum realm, it has long been
wondered whether any meaningful analogue to KAM theory
exists, and a general theory for quantum thermalization in
near-integrable systems is lacking despite much work [651,
676, 677, 679-681, 684—-693].

In their experiment to investigate this issue, Tang et al
[140] observed relaxation and thermalization dynamics in the
time evolution of the momentum distribution of the kicked 1D
gas. The distance to a thermal distribution is quantified and is
observed to undergo two distinct exponential decay regimes.
The first evolution is a prethermalization (dephasing) decay,
and the second consists of the relaxation from the prethermal
state towards a Gaussian thermal distribution determined by
the Gibbs ensemble.

Tang et al found that the thermalization rate in this second
step obeys a simple scaling expression that depends only on 6
without any free parameters. The expression accounts for the
DDI perturbation using Fermi’s golden rule formula, multi-
plied by the cross section for short-range interactions to occur.
This describes the dominant integrability-breaking diffractive
interaction term: that of two atoms scattering via the contact
interaction while simultaneously interacting with a third atom
at long range via the DDI. It is remarkable that such a simple
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description appropriately describes the thermalization dynam-
ics of such a strongly interacting system near an integrable
point.

The experiment was supported by an exact diagonalization
calculation of a two-rung XXZ quantum magnetism model
[694] with long-range hopping serving as the perturbation.
Similar two-stage thermalization dynamics was observed des-
pite the microscopic dissimilarity of the systems.

Future work could attempt to understand how generally
applicable is this simple, Fermi golden rule-like expression for
a wider variety of quantum quench experiments. One could
also explore how more sophisticated descriptions based on,
e.g. adaptations of generalised hydrodynamics, may better
describe the dipolar 1D near-integrable system. More gen-
erally, this work sets the stage for a wide array of inquir-
ies into the physics of strongly interacting quantum systems
near integrability. In the next section, we describe one such
investigation, that of quantum many-body prethermal ‘scar’
states, enabled by the realisation of dipole-stabilised excited
1D quantum gases.

71.3. Dipolar  stabilisation  of  super-Tonks—-Girardeau
gases. Asmentioned above, the TG state is one in which 1D
bosons with a divergently repulsive coupling strength behave
like fermions. The two-body wavefunction vanishes when the
atomic positions coincide, and so possesses exclusion correl-
ations as if it were an ideal Fermi gas. A quantum quench
of the TG gas prepares an eigenstate of the attractive Lieb—
Liniger model, the so-called super-TG gas mentioned above
in section 7.1. The TG and sTG state wavefunctions and ener-
gies are smoothly connected as a function of g;p, so while the
effective model exhibits a discontinuity, the system remains
adiabatic throughout the parameter quench. The result is a
highly excited sTG state wherein the 1D bosons that attract-
ively interact at short range behave as if they were ground-state
fermions repulsively interacting at long range. That is to say,
the bosons develop even stronger exclusion correlations than
the ideal Fermi gas. The two-body wavefunction node inher-
ited from the quench from the TG state extends into a pair of
nodes separated by the length a;p, effectively introducing a
rigid exclusion zone similar to the classical hard rod model.
Moreover, its excited-state many-body wavefunction exhibits
many more nodes than the TG wavefunction, which enhances
the stiffness of the sTG gas [141, 695].

Such metastable attractive gases typically collapse into
bound states (cf the ‘Bose-nova’ implosion of strongly attract-
ive BECs in 3D [105]). By contrast, however, the strong anti-
bunching correlations in the sTG gas wavefunction prevent
atoms from approaching each other close enough to bind into
cluster-like states. The sTG gas is expected to never collapse,
despite the multitude of bound states of lower energy. The
deeper reason for this surprising metastability lies in the afore-
mentioned integrability of the Lieb—Liniger model, for any g;p
value. That is, the sTG state is also a solution to the Bethe
ansatz equations of the Lieb—Liniger model [644].

Experimentally, however, the sTG gas does collapse for
attractive interactions weaker than those in the unitary
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gip — —oo regime, as first observed in the nondipolar Cs
system [142]. While the system remains effectively integrable
in the unitary regime, since the interaction term dominates all
others in the perturbed Lieb—Liniger Hamiltonian, the system
can collapse when the interactions become sufficiently weak
outside the unitary regime. That is, the breaking of the integ-
rability of the Lieb—Liniger model becomes manifest once
the system is no longer unitary near the resonance. Experi-
mental imperfections such as the longitudinal harmonic trap
and the virtual excitation of the higher motional bands of the
transverse 2D optical lattice forming the array of 1D traps
all break integrability, if only weakly [143, 673-675]. These
yield nonzero matrix elements coupling the initial state and
molecular/cluster-like bound states in the near-integrable sys-
tem that enable the collapse of the sTG state at finite negative
g1p coupling strength.

This may be understood in analogy to the classical 1D gas
of hard rods of length a;p. The rod length a;p extends an
exclusion zone that prevents rods from overlapping. When
more rods N are stuffed into a box of length L than can fit
end-to-end (i.e. when Nap > L), then the system ‘collapses’
by kinking the rods out of 1D alignment. In the quantum sys-
tem, a;p is the 1D scattering length definable through gip =
2h%a/ma* = —2h*/map. Both gip and a;p are tunable using
a confinement induced resonance (CIR) [641]. These arise in
quasi-1D traps due to the open-channel-like role of higher-
energy transverse motional states of the trap and were first
observed in Cs [696]. The CIR provides tunability through the
dependence of a on B-field near a 3D FR:

2Wa(B) 1
giv(B) = ma% 1—Ca(B)/a,’ (73)

where a, is the transverse oscillator length and C~1.46
[641].

Kao et al [143] explored the effect of DDIs on the stability
of the sTG gas. An array of 1D Dy gases were quenched into
the sTG state under various angles 6 with respect to the 1D
axis. CIRs were found near a broad 3D FRs in 162Dy, allow-
ing gip to be tuned from 0 — 4+00 — —oco — 0~ by increas-
ing the magnetic field. Note that unlike theory predictions
[136, 697-699], molecular binding energy measurements of
the CIRs employed in [143] showed that they did not exhibit a
dependence on 6, neither in the repulsive (0 = 90°), attractive
(6 = 0°), nor non-dipolar 6 = 0, configurations. The state of
the system was revealed through gas stiffness measurements
obtained from the observations of the square of the ratio of the
breathing-to-dipole oscillation frequencies. This quantity R is
greater than four in an sTG gas, but dives towards zero when a
gas collapses into bound states due to diverging compressibil-
ity. Figure 38 contrasts the repulsive and attractive DDI cases.

Intuitively, one might expect that a repulsive DDI would
inhibit the sTG gas from collapsing, by adding a repulsive
energy barrier between atoms, at least until the contact interac-
tion becomes too weak. Conversely, an attractive DDI might
cause the sTG to collapse at a more strongly negative gip
than in a nondipolar gas. However, this intuitive picture is
confused by the fact that the DDI breaks integrability, see
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Figure 38. Comparison of excited state stiffness R versus coupling
parameter A% gﬁ)z showing (a) increased instability due to an
attractive DDI in contrast to (b) the complete stabilisation of the
excited gas due to the repulsive DDI. A is a normalised form of the
coupling constant [700], @ is the longitudinal oscillator length in
the 1D trap, and N is the average number of atoms per tube. The
regime of collapse is indicated in panel (a), while the unitary, scar,
and weakly interacting regimes are roughly sketched in panel (b).
From [143]. Reprinted with permission from AAAS.

section 7.1.2, leading to collapse through eigenstate mixing
with cluster states.

Kao etal [143] indeed found that the repulsive DDI sta-
bilises the excited gas, and surprisingly, does so regardless
of how close to zero the negative gip is tuned. That is, the
DDI does not simply expand the region of sTG gas stability
by a small margin, but prevents collapse for all attractive con-
tact interactions. By contrast, an attractive DDI hastened the
collapse, as expected, while collapse in the nondipolar case
occurred at a coupling strength similar to that found in Cs.

The reason for the dramatic influence of DDI on the sta-
bility of the excited states, despite being too weak to affect
the phase diagram of the ground state, remains unclear,
pending future studies. This experimental discovery never-
theless provides access to a brand-new near-integrable sys-
tem where prethermal scar-like states can be explored. We
note that stable gases with R <4 were also observed, sug-
gesting that gas-like few-body cluster states had been formed
as predicted in [643]. In the next section, we discuss how
the stabilisation enabled a novel state-preparation scheme that
exploits a quantum holonomy inherent to the Lieb-Liniger
Hamiltonian.

71.4. Quantum holonomy, topological pumping, and strongly
correlated prethermal states.  Systems with a quantum
holonomy possess the property that eigenstates can change
after a cyclic, adiabatic variation of Hamiltonian parameters:
while the Hamiltonian stays the same, the resulting eigenstate
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differs [701]. The Lieb—Liniger Hamiltonian harbours one
such exotic quantum holonomy [702]. It is realised by cycling
gip through 07 — +00 — —o0o — 07, resulting in different
eigenstates of higher energy upon the return to the same gp
value.

Such holonomies provide a fopological means with which
to pump a system into higher energy states. A simple, single-
particle example of an energy pump arises in the case of a
1D infinite square well: periodically imposing a delta func-
tion potential between the infinite barriers pumps the ground
state wavefunction to higher energy eigenstates [703, 704].
Topological pumping in space has been known at least since
Archimedes discovered the use of a screw to move water up
an incline. Rotating Archimedes’ screw by 27 returns it to the
same configuration, but the water within the screw advances
by one screw site. Similarly, the Thouless charge pump trans-
lates an electron one lattice site due to topological proper-
ties of the system [705], inducing quantised transport in an
insulator; such spatial quantum topological pumps have been
demonstrated using quantum gases in special optical lattices
[706, 707].

The many-body quantum holonomy of the Lieb—Liniger
Hamiltonian was realised in [143] using Dy 1D gases by
scanning B through a sequence of CIRs. This enabled the
first topological pumping of a quantum many-body gas up
a hierarchy of extensively higher energy eigenstates because
the gas was stabilised by the repulsive DDI; see section 7.1.3.
Figure 39 shows this hierarchical ladder.

In the very strongly interacting g;p — =00 regime of the
energy eigenstate spectrum, the system is effectively integ-
rable because the large contact interaction overwhelms all
integrability-breaking terms in Hamiltonian. By contrast, in
the opposite, weakly interacting regime, the system is effect-
ively single-body (MF). It is thus only in the intermediate-
coupling regime where the topological pump prepares a
hierarchy of exotic, ergodicity-avoiding prethermal states in a
system that remains many-body and correlated but also effect-
ively not integrable because of non-negligible contributions
from the trap and the DDI. Surprisingly, despite the lack of
perfect integrability, its energy density follows the solutions to
the Bethe ansatz equations throughout the coupling regimes,
within experimental uncertainty.

These particular excited states resemble the atypical, noner-
godic quantum many-body scar states that fail to immediately
thermalize [144]. Their name derives from the regular pat-
terns (scars) traced by special wavefunctions through the oth-
erwise ergodic phase-space of single-particle chaotic quantum
systems [708]. Until very recently, it was believed that long-
lived far-from-equilibrium states of quantum many-body sys-
tem only exist in integrable and many-body localised systems
[709, 710]. The discovery of ‘quantum many-body scars’ in
a Rydberg-atom lattice [24, 711] showed that such far-from-
equilibrium states can be long-lived outside these limits, and
thus potentially serve as long-lived quantum memories [144].

The novel scars exhibited by the dipolar-stabilised excited
1D gas are the first observed in a continuous, rather than
lattice-based system. The fact that scars might form near
integrability was first pointed out in [677, 712], and their
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Figure 39. The hierarchy of energy eigenstates accessible via
topological pumping using the quantum holonomy point at

g1p = 00. Two complete quantum holonomy cycles are shown
verses energy per particle £/N. The Bethe ansatz solutions for the
repulsive (attractive) LL model are shown in dotted (solid) curves,
along with the associated data on the repulsive (attractive) branches
in black circles (blue squares). The intermediate coupling region
associated with scars is shaded (starting above the ground-state
repulsive branch). To the left and right are the weakly interacting
and effectively integrable unitary regimes, respectively. From [143].
Reprinted with permission from AAAS.

observation in the 1D dipolar system makes this connec-
tion experimentally explicit. Measurements of stiffness and
energy-per-atom versus time show that the states do not heat;
rather, they persist far longer than the collective-oscillation
time scale in a prethermal state [143]: entropy rather than
energy increases while the gas weakly thermalizes.

The dipolar-stabilised 1D gas results mark an advance in
our understanding of the exciting and highly active topic of
quantum nonequilibrium many-body dynamics: not only do
they provide a new way of creating a class of interesting
nonequilibrium states that are relatively unexplored from both
theoretical and experimental points of view, but they also draw
a rich new correspondence between quantum scars, topolo-
gical pumping, and near-integrability. In addition to preserving
quantum many-body correlations, these scars may play a role
in the quantum simulation of exotic fermionic many-body sys-
tems, since Feynman’s ‘no-node’ theorem does not apply to
the wavefunctions of excited bosonic states [713, 714].

72. Spinless dipoles in lattices

Even in absence of a spin degree of freedom, because of
its long-range and anisotropic character, the DDI drastically
affects the physics of lattice-confined atomic assemblies, both
its static properties and in its dynamics. In the first part, we
describe assemblies of spin-polarised dipolar particles, loaded



Rep. Prog. Phys. 86 (2023) 026401

Review

in 3D optical lattice potentials, and the status of their experi-
mental achievements with highly magnetic atoms.

72.1. Extended Hubbard Hamiltonian and consequences.
Assemblies of spinless interacting particles, confined in deep
lattices (tight-binding regime), are typically well described via
Hubbard models of the form:

V| Afata a
H=— Z fijalaj+ 3 Z Ui,j,k,zaj-a;akau (74)

i#j iJj

here, a; is the (Wannier) destruction operator for a particle
at site i, and we note the number operator 71; = a; a;. We
first keep the discussion general, and the operators éz;r , aj
abide either the canonical commutation or anti-commutation
relations for bosonic or fermionic particles, respectively. In
ultracold atomic systems, the Hubbard model is derived by
writing the Hamiltonian of the particles moving in the peri-
odic external potential of the lattice in the basis of the asso-
ciated Wannier wavefunctions {w;}; latice sies in the lowest
band and restricting the motion to this lowest band [8, 127,
128, 634, 635, 715]. The t; ; coefficients correspond to the
energies from the single-particle kinetic and external (lat-
tice) potential terms for a particle initially at site i and mov-
ing to site j. They are thus denoted hopping or tunnelling
coefficients. Due to the weak overlap between Wannier func-
tions at different sites in the tight-binding regime, hopping
is generally restricted to the nearest-neighbour hopping, j =
i+u,, u, denoting the lattice unit cell vector in direction
o = x,y,z. The U; ;i describe interparticle interaction ener-
gies for two particles located at sites i and k initially and, after
the interaction, at sites j and /. Explicitly, those coefficients
write U; ji; = [ drdr'w (r)wf (r')U(r —r")wi(r")w;(r) with
U(r), the interparticle interaction potential. Because interac-
tion potentials usually decay with distance, the largest inter-
action contribution for bosonic assembly is the on-site inter-
action (i = j = k=1) yielding a term U#;(n; — 1), with U =
U, ;. We note that the on-site term cancel for fermions due
to the Pauli exclusion principle and the single-band assump-
tion, precluding multiple occupancy at one lattice site. Off-site
interactions terms may also arise. In deep lattices (i.e. addition-
ally accounting for the weak overlap between Wannier func-
tions), the largest contribution of off-site interactions are those
involving no particle motion, i.e. i = j # k = [ between two
particles located at cite i and k respectively, yielding the coef-
ficients Vi x = Vi, i,k, k.

In the case of contact-interacting assemblies, off-site inter-
actions vanish with the Wannier functions overlap. There-
fore, the standard Hubbard model for bosonic spin-polarised
contact-interacting samples in a cubic lattice (spacing d) has
only two parameters: the tunnelling rate ¢ = f; ;1 , independ-
ent on the bond direction «, and the onsite interaction U [634].
This yields the so-called Bose-Hubbard model:

H=—t
(i.d)

g U
alaj+ 53wl =1), 9
4
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with (i, j) denoting nearest neighbours sites. For the spin-
less fermionic case, in absence of long-range interactions,
the standard Hubbard model only yields tunnelling terms,
which intimately interplay with Pauli exclusion principle. We
note that, in the contact-interacting fermionic case, two spin
components are usually considered, which also yields a two-
parameter (tunnelling/on-site interaction) model called the
Fermi—Hubbard model [715]. This is:

H=-1)" al,

(@.4)o

with @; » (71; ;) being the fermionic destruction (number) oper-
ator for particle of spin o at site i. This expression matches
the original model heuristically introduced by Hubbard in the
context of condensed matter systems, where strongly correl-
ated electrons move in the ionic crystal. In this context, Hub-
bard models have been powerful in predicting or explaining
quantum phases of matter [117, 716, 717].

Atomic systems offer direct and convenient control of
the Hubbard model parameters. In particular, for contact-
interacting particles (spinless bosons or spin-1/2 fermions) on
a cubic lattice created by standing-wave of light (e.g. retrore-
flection of a laser beam) [7, 635], ¢ and U intrinsically depend
on the light intensity. The light intensity indeed sets the depth
of the periodic lattice potential, Vi. Consequently, it con-
trols both the external potential in the Hamiltonian (com-
ing in the expression of ¢) and the extension of the Wan-
nier wavefunction, at the basis of the Hubbard derivation.
Defining s = VL /E, to be the ratio of the lattice depth to
the recoil energy, E; = B2k, /2m (m is the atomic mass and
ki, = 2w /d the reciprocal lattice constant), ¢ is found to vary
as toc s/*exp (—25'/2) and U as s*/* at large lattice depths
[7]. Therefore, the ratio ¢/U o exp (—2s1/ 2) decreases for
increasing lattice depths. Furthermore, U is proportional to
the scattering length and can be additionally controlled thanks
to FRs [268]. Relying on these control knots, ultracold-gas
experiments have revealed and explored the spectacular effects
related to the dynamics and thermodynamics of Hubbard mod-
els. For instance, the transitions from superfluid or metal-
lic phases to strongly interacting insulating ones, called Mott
phases, arising from the competition between U and ¢, have
been observed both in bosonic and in fermionic systems [8,
127, 635-637, 718-721].

In the reminder of this section, we only consider spin-
less atoms. In the case of highly magnetic atoms, the long-
range and ansiotropic DDI gives rise to additional interac-
tion terms in the Hubbard model, following the general form
of equation (74). Additionally, the DDI introduces depend-
encies in the coefficient values related to the orientation
of the dipoles defined by the angles (6,¢) compared both
to the on-site Wannier function anisotropy or to the lattice
geometry [13, 146, 722, 723]. For simplicity, we first con-
sider the case of dipolar bosons. In the tight binding regime,
the relevant extended Bose—Hubbard model can be written
as [146]:
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which includes the terms with contributions up to first order in
the Wannier wavefunction overlap. The dominant effect of the
DDI is the on-site dipolar-interaction term Ugq(¢, ), which
adds to the contact-interaction one, U., and which depends
on the Wannier function anisotropy compared to the dipole
orientation due to the DDI anisotropy. For an isotropic Wan-
nier function, Uyq cancels. Because of the long-range charac-
ter of the DDI, off-site terms also contribute. These are: (a) a
NNI V,, between two atoms localised on neighbouring sites
i and i+ u,; (b) a density-induced tunnelling (DIT) term of
strength At,,, arising from the interaction between one atom
localised at site i or i + u,, and one delocalized between i and
the neighbouring site i 4+ u,,. Remarkably, at zero order in the
wavefunction overlap, the NNI does not cancel, but becomes
independent of the lattice depth, its strength is approximately
given by V,, = Uya(du,,) with Uyqg given in equation (11). In
contrast, the DIT only exists at first order in the Wannier over-
lap between sites. Additionally, due to the DDI anisotropy, V
depends on the dipole orientation, mainly compared to the dir-
ection u,, of the lattice bond on which the interaction occurs.
At,, also depend on (6, ¢) both via the bond direction and the
Wannier wave function anisotropy.

The competition between the additional terms appearing in
equation (77) (i.e. V,, and At,,) and the conventional ones (i.e.
U and 1) are expected to yield new physics. Such extended
Hubbard models have been extensively studied theoretically,
in various lattice geometries and dimensionalities, for various
parameters strengths and lattice filling n, as well as for differ-
ent particle statistics (fermions or bosons) [146]. Rich phase
diagrams, including unconventional quantum phases support-
ing strong and exotic correlations, have been predicted. The
most studied case is the one of bosons in a 1D or 2D square
lattice [724-736]. Here, charge-density waves, i.e. insulat-
ing phases with modulated density, have been predicted for
strong enough NNI, V, [724, 727, 728, 730, 733, 736, 737].
Depending on the filling and on the dipole orientation, star,
stripe or chequerboard spatial patterns have been predicted
[729]. The transition from superfluid to density-wave states
can occur directly without an intermediate ‘supersolid’ (or
‘lattice-supersolid’) phase [727, 728, 730, 733, 736], i.e. a
superfluid with a spatial density modulation different from the
lattice itself [738]. Yet, under some conditions (typically low
filling n < 0.5 and finite U > ¢), a lattice-SSP has also been
predicted in simulations [724, 725, 731, 733, 734, 736]. It
is in particular expected to be stabilised by doping (adding
holes or particles) of the density-wave state away from the
rational fillings. At incommensurate fillings and large enough
V., phase separation into a pure solid and a homogeneous
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superfluid has also been predicted to occur [724]. Phase
separation is favoured by large U, yet it is destabilised, contrar-
ily to the supersolid, by considering the next order of extension
of the DDI, and may ultimately disappear when one consider
the full range of the DDI. In 1D, an Haldane-like phase has
also raised high interest [726, 731-733, 736]. This insulating
phase occurs at unit filling for U ~ V > ¢; it does not break the
translation symmetry but stands out by its special correlations.
Compared to the Mott insulator phase, the particle-hole fluctu-
ations indeed appear with an alternating order. These uncon-
ventional phases have critical temperatures typically scaling
with V,, /kg.

For spinless fermions, a similar expression equation (77)
can also be derived, yet because of the Pauli exclusion prin-
ciple, the second and fourth terms of the sum in equation (77)
cancels, only retaining the tunnelling and NNI terms. Theoret-
ically, this case is also of interest, yet turns out to be more com-
plicated to treat than the boson one [13, 146, 739-745]. Few
studies have shown that various kinds of charge-density-wave
and SSPs also forms in dipolar fermions lattice systems in 2D
[739-742, 744] and 3D [743]. Additionally, p-wave super-
fluidity may arise. The interplay between lattice and dipole-
induced Fermi surface deformation has also been predicted to
yield a topological phase transition, of a Lifshiftz type [745].
Of even larger interest has been a case recovering a situation
closer to the bosonic model, with (effective) spin-1/2 fermi-
ons as for the conventional Hubbard model; see equation (76).
This particular case will not be discussed further here, inter-
ested readers can consult e.g. [13, 146].

72.2. Experimental status. ~ Up to now, one experiment has
reported on dipolar effects in quantum gases of spin-polarised
highly-magnetic atoms confined in a deep lattice potential
[306]. It is based on '*Er BEC loaded in a 3D optical lattice
of parallel epipedic unit cell with spacings (266,266,532) nm,
see figure 40(a). This work demonstrates the relevance of the
extended Hubbard model (equation (77)) for magnetic bosons,
see figure 40(b). By varying both the lattice depths independ-
ently in each spatial direction and the dipole orientation, Baier
et al [306] reveal the impact of the DDI in the lattice system—
that is on the excitation spectrum, in particular affecting the
gap of the Mott-insulator phase, and on the phase diagram
itself, in particular shifting the superfluid-to-Mott-insulator
transition. Baier et al [306] additionally quantified the vari-
ous terms of the extended Hubbard model (equation (77)).
They measured the dipolar on-site interaction contribution,
Uug, by varying the Wannier wavefunction anisotropy and the
dipole orientation. They also observed the two leading long-
range interaction terms, i.e. the NNI and DIT. The strength
of the NNI was isolated and quantified thanks to a differen-
tial measurement of the particle-hole excitation gap, compar-
ing two excitation directions in an otherwise identical system,
see figure 40(c). Based on equation (77), the excitation gap
depends on on the excitation direction compared to the dipole
orientation by the contribution of —V, (6, ¢). The differen-
tial measurement shows that V, is tunable from —h 30 Hz
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Figure 40. Measurement of the extended Bose—Hubbard model
from a spin-polarised '**Er BEC loaded in a 3D anisotropic lattice
[306]; (a) illustrates the lattice and atomic dipoles geometry,

(b) illustrates the different term of the Hamiltonian. (c) and (d)
Measurement revealing the NNI term via its effect on the particle
hole excitation energy, (c) exemplifies the principle of the
differential measurement, comparing the resonance position from
the modulation in two different excitation directions using the same
overall configuration. The shift between y (red) and x excitation is
attributed to the loss of one distinct NNI unit V), or V as illustrated
in the insets. (d) Summarise all the differential measurement
performed with the dipole oriented along y (green) or along x
(orange) and the comparison to the theory prediction (dotted line).
From [306]. Reprinted with permission from AAAS.

to & 60 Hz, in the 266 nm spacing directions, in agreement
theoretical expectations, see figure 40(d). The DIT was evid-
enced by the observed shift of the superfluid-to-Mott-insulator
transition, which cannot be entirely explained by a theory
accounting for the effect of the on-site DDI but is when
accounting for DIT additionally [746].

The predicted exotic phases of the extended Hubbard model
have not yet been observable in the experiment. We note that
the strength of the NNI, being mainly set by the simple mag-
netic moment u and by the lattice spacing, cannot be easily
increased in the experiment. Its relative weakness in systems
made of magnetic atoms impose stringent restrictions on the
temperature below which the phases of interest would become
observable as well as on the time needed for their spontaneous
emergence or their (adiabatic) preparation. Such regimes are
on the edge of the experimental possibilities to-date. To mitig-
ate these constraints, interesting approaches consist in design-
ing optical lattices with small (sub-wavelength) spacings, thus
increasing the NNI coefficient [747—753]. Finally, preparation
and detection schemes at the single-atom level [637, 754, 755]
are a direction of broad interest which would ease the observa-
tion of exotic phases as well as many others effects of interests,
e.g. the influence of the DDI on the correlations or the dynam-
ics of impurities. Beyond the case of spin-polarised bosons in
rectangular lattices, very important prospects relate to the case
of the distinct fermionic statistics, as well as to the change of
the lattice geometry and the investigation of frustration or dis-
order effects.
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73. Exploration of spin lattice models and quantum
magnetism

73.1. Introduction.  Beyond the spin-polarised case, mag-
netic atoms in optical lattices make it possible to explore
quantum magnetism. For this reason, these are exciting system
that may realise an analogue quantum simulator of canonical
open problems associated with quantum many-body physics
[7, 8,13, 128, 146, 637].

In typical experiments with ultracold atoms interacting at
short range, a spin degree of freedom can be included by,
e.g. populating different Zeeman sublevels in the ground-state
hyperfine manifold, see also section 6.1.1. In this case, the sys-
tem is well described by a spinfull Hubbard model: Extending
the case of equations (75) and (76), it takes the general form:

“toa 1 it At oA
H=—t Z aimaj,m—i-i Z Uk,l}m,na;f,[a;r,nahmahka (78)
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where 4d; ,, is the destruction operator of an atom of spin m
at site ¢ and Uy, is the on-site spin-dependent interac-
tion that one can deduce from the ay scattering lengths; see
also sections 2.4 and 3. Here, we assume a spin and direc-
tion independent tunnelling rate ¢. If # remains weak compared
to the on-site interactions, tunnelling processes between two
adjacent occupied lattice sites are energetically forbidden and
they contribute as only a second-order virtual process. In such
a process, an atom tunnels to an occupied site where spin-
dependent onsite interaction may lead to a change of the indi-
vidual spin of the atoms before the atom tunnels back to its ori-
ginal (unoccupied) site. In the case where there is one particle
per lattice site, this results in an effective lattice model with
spin-spin NNI. In the case of effective spin-1/2 systems (or
larger spin with SU(N)-symmetric interactions), with interp-
sin on-site interaction strength U, the system is well described
by the Heisenberg Hamiltonian,

_ Jex
2 £
(i,J)

oy Lo o- o ot
Hex [S,?.Sj+2 (S,. ST+ .Sj)], (719)

with Jo, = 1412 /U [756-758], where + holds for fermions,

and — for bosons. Sf_’+’z) are the spin operators on site i
and defined as 89 =37 m,S,(,;’lJ,r’Z)&im&i,m', with a;

the Wannier operator annihilating a particle on site i in the
internal state m and S,(n_,,’j’z) the usual spin matrices elements

(m|S§¢+2)|m’). In the case of a spin 1/2 system, they are
the Pauli matrices. This effective interaction, known as super-
exchange, is the direct analogue of the exchange interaction
between strongly interacting electrons, which arises from the
interplay between tunnelling and Coulomb blockade [117].
For the goal of gaining a deeper understanding of condensed
matter phenomena, physics arising from the super-exchange
interaction in atomic assemblies has been widely studied,
both in bosonic [540, 759-762] and in fermionic [763-769]
assemblies; see also [637] for a review. In the case discussed
here of atoms interacting at short range, the resulting Heisen-
berg Hamiltonian is limited to isotropic (XXX) interactions
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between nearest neighbours, which conserve the total longit-
udinal magnetisation.

In the case of particles interacting via the DDI, the situ-
ation is qualitatively different. This is because the DDI intro-
duces a direct coupling between spins which, in contrast to
super-exchange interactions, is long-ranged (not limited to
NNIs), and anisotropic (following the intrinsic anisotropy of
the dipolar forces). In addition, as a direct consequence of
the anisotropy, the total longitudinal magnetisation is not con-
served. The associated two-body interaction potential is given
in equation (2) and leads, by projection on the Wannier basis
(see also section 7.2), to on- and direct off-site interactions
terms comprising similar elastic, exchange and relaxation pro-
cesses in the lattice Hamiltonian.

When tunnelling is absent, as is the case in very deep lat-
tices, it becomes possible to study spin lattice models due
to the mere DDI, i.e. without the addition of super-exchange
effects. In practice, for magnetic atoms, the DDI can notice-
ably exceed super-exchange interactions even when ¢ is not
negligible, which eases the requirements for investigating
equilibrium versus out-of-equilibrium quantum dipolar mag-
netism. In addition, compared to the situation governed by a
Heisenberg Hamiltonian, it is expected that these dipolar inter-
acting spin ensembles will display a number of exotic quantum
magnetic behaviours [82].

73.2. Free magnetisation and XYZ spin models.  Perhaps
the most striking differences between the spin-lattice mod-
els of the super-exchange Hamiltonian (equation (79)) and the
DD lattice Hamiltonian in equation (2) arise from the pres-
ence of magnetisation-changing collisions. Through the con-
servation of total angular momentum, these magnetisation-
changing collisions introduce an intrinsic nonlinear coupling
between the spin degrees of freedom and the orbital degrees of
freedom, see also section 6. In the context of lattice systems,
this coupling can result in an effective XYZ Hamiltonian:

Hyz =" Ji; (0815 +851.8)+487.59)

iJ

(80)

where «, 3, and -y differ. Note that in equation (80), the coup-
ling rate J; ; may also depend on the intersite bond, and the
sum is not restricted to nearest neighbours. Since aS‘j‘.S’f; +
5518y = 2 (5157 +57.57 ) + 252 (8757 +57.57),
the fact that o and 3 differ is directly associated with the DDI
couplings that do not conserve magnetisation.

This Hamiltonian is associated with novel quantum phases
presenting non-trivial topologies [770-773]. In these propos-
als, the topological states arise due to the SOC associated with
the DDI, and the associated circulation. As for the bulk case
of dipolar spinor physics (see section 6.3), the actual use of
the spin-orbit term to achieve coherent coupling between dis-
crete single-particle states with different external (orbit) and
internal (spin) properties, may require extremely fine tuning
of the experimental parameters such as the magnetic field with
a precision better than the 10 xG level. Similar to the case of
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the control of dipolar relaxation, described in 3.3.5, the pres-
ence of a lattice and its associated band gap might relax these
conditions.

73.3. Fixed magnetisation and the secular NMR Hamiltonian
(XXZ model).  The experiments have first concentrated on
the regime where magnetisation-changing collisions may be
ignored. Such a situation may be realised naturally when
particles never share the same lattice site, as dipolar relaxation
is a localised phenomenon when the magnetic field is suffi-
ciently high, see section 3.3.3. This applies when Ry;(B) < d,
where d denotes the lattice spacing, see equation (38). It yields
B> %L typically of
a few kHz, while grup is of a few kHz/mG (see section 6.3)
and off-site dipolar relaxation is practically suppressed for
B 2 10mG. Additionally, as described in section 3.3.5, a very
strong reduction of magnetisation-changing collisions can also
be obtained in optical lattice, when the energy released in a
dipolar relaxation event does not match the energy for band
excitation. This applies for both on-site and off-site processes
and as long as the magnetic field is low enough so that the
Zeeman splitting is smaller than the lattice band gaps [163].
Typically the lattice depth Vi is a few tens to hundreds of E,
and the above suppression holds for small B up to few tens of
mG.

The effective Hamiltonian that describes interacting dipoles
in a lattice in absence of dipolar relaxation is known from the
nuclear magnetic resonance community as the secular dipolar
Hamiltonian [256], which reads:

1
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where r; ; and z; ; are the distance between sites i and j
and its projection along the quantization axis z, respectively.
Compared to the Heisenberg Hamiltonian of equation (79)
introduced above, the main differences are (a) the long-range

and anisotropic nature of the coupling J; ; o q , (1-3 % ’) not
restricted to nearest neighbours, and (b) the fact that the mag-
nitude of the exchange term (S;F.S S S;r) is different,

changed by a factor —1/2. This seemingly slight modific-
ation in fact breaks the SO(3) rotational symmetry of the
Hamiltonian and can have important consequences both for
the magnetic phases in the ground state [82], and for out-of-
equilibrium properties [774]. Hg in fact corresponds to an
XXZ Heisenberg model (« = /3 compared to the general XYZ
model of equation (80)).

73.4. Large spin magnetism.  The Hamiltonians Hxyz and
Hg.. introduced above show that magnetic atoms can become
a useful platform to investigate spin lattice models for
frozen particles. As previously discussed in the bulk case in
section 6.1.1, the large DDI from magnetic atoms is the con-
sequence of a large total (spin plus angular) orbital momentum
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s> 1/2, so that these lattice models can typically be invest-
igated for rather large spins. One of the interesting practical
consequences is that the large spin of atoms provide new meas-
urement protocols because spin dynamics can be monitored by
measuring the evolution of the population of the different Zee-
man states directly, contrary to the case of s = 1/2 particles.

Moreover, the existence of a large spin also introduces
novel physics compared to that associated with the pure
dipolar-based models, Hxyz or Hs, as well as with Hex for
s = 1/2-particles. For example, spin-dependent contact inter-
actions, directly related to the existence of spin-dependent
scattering lengths (as discussed in section 6.1.3), also need to
be taken into account. As for the bulk case, the description of
the interaction and the different ground state phases becomes
increasingly complicated with the spin length, even without
dipolar interactions. [775] studies the specific case of spin-1
atoms with antiferromagnetic interactions (a, > ag) and shows
a phase diagram similar to that obtained with spinless bosons,
but with a polar superfluid phase and singlet to nematic phase
transitions now present inside the insulating lobes. This spin-
1 phase diagram was first experimentally investigated with
sodium atoms [776], with negligible dipolar interactions.

Studying the interplay between spin-dependent contact
interactions and dipolar interactions in a lattice setting is
an extremely appealing prospect, in particular at large lat-
tice depth where spin-exchange processes within a lattice
site will result in a spin-dependent super-exchange interaction
between neighbouring sites. New spin-dependent terms, there-
after denoted as Hgq, thus arise in the NNI in addition to H
and Hy.. This results in a very complicated Hamiltonian which
has now become experimentally available.

73.5. Magnetism as a function of lattice depth.  In the pres-
ence of tunnelling, super-exchange processes Hex and Hgy
and dipolar interactions Hg, must all be taken into account.
Interestingly, while the onsite interaction U (possibly spin-
dependent) increases with lattice depth, the tunnelling ¢, and
H.x and Hy decrease, while Hy is more or less independent of
lattice depth. By varying the lattice depth, it is thus possible to
study the interplay between these different mechanisms. When
the lattice depth is weak and tunnelling is allowed, magnetism
is driven by the interplay between long-range dipolar interac-
tions and short range physics. When the lattice is very deep and
tunnelling if frozen, the arrangement of the atoms in the lattice
is typically very regular due to the Mott insulator transition [8,
127, 634, 637, 718-720] (see also discussion in section 7.2),
H. and Hgq vanish, and one can then revisit spin lattice models
associated with the secular Hamiltonian.

Varying the lattice depth thus offers a unique and exotic
situation to study the cross-over between quantum magnetism
associated with Heisenberg-like Hamiltonian, the t-J model
at intermediate lattice depths, where quantum magnetism and
transport compete, and, at low lattice depth, spinor physics.
The intermediate regime is especially enticing, as it repres-
ents a challenge for a realistic theoretical simulation. While
most of the research on magnetic atoms has up to now focused
on Bose systems [256, 777], dipolar Fermi gases are also
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available [263] and should be fascinating systems with which
to study quantum magnetism, as tunnelling and spin-dynamics
are expected to be strongly coupled and the atoms are under
the strong influence of the Pauli exclusion principle.

73.6. Other experimental systems.  Similar spin models can
also be studied using either heteronuclear molecules [19, 20,
129, 778] or Rydberg atoms with electric dipoles [24, 130,
131, 779]. In these cases, the reduced collisional lifetime for-
bids working in the regime where tunnelling is significant.
Important experimental results have recently been obtained for
these systems exploring the physics of spin-lattice models for
an assembly of effective spin-1/2 particles pinned in a peri-
odic potential. One of the attractive features of these systems
is that the relative strength of the exchange and Ising terms of
the interaction can be experimentally controlled.

Furthermore, ions have become a prominent platform to
study spin-lattice models [30, 780, 781]. In these ensembles
of crystallised ions, an effective spin-spin interaction is medi-
ated between the ions using phonons. These systems possess
the unique possibility to vary the range of the effective inter-
action potential between the particles.

While these other systems are extremely promising and
offer complementary paradigms of quantum magnetism, a
few characteristics distinguish the prospects offered by highly
magnetic atoms to date:

e Magnetic atoms uniquely realise large-spin systems, beyond
the effective spin-1/2 case (see also section 7.3.4).

Up to now, systems of ions, Rydberg atoms and molecules
remain limited in the size of the sample under studies or
in their densities. While ultracold atoms offer many-body
systems of several thousands or tens of thousands of atoms
with lattice filling factors on the order of unity, Rydberg
and ion assemblies are restricted to a few tens to hundred
particles. This size limitation is particularly problematic for
the case of long-range interacting systems, for which border
and finite-size effects are important. Despite the tremendous
progress made on molecular systems, the fillings achieved
remain below 0.5 [40].

Magnetic atoms primarily offer a competition between spin-
spin interactions and tunnelling, as both terms can be
allowed and tuned on the same scale. This enables the
exploration of quantum magnetism when transport com-
petes with spin-spin interactions, which is perhaps the
most relevant regime from the point of view of quantum
simulation.

73.7 Experimental status with magnetic atoms.  The study
of dipolar lattice systems has started with two complementary
experiments performed with ultracold KRb molecules [129]
and a BEC of Cr atoms [256]. For the experiments with
KRb, an effective spin 1/2 system is encoded in two rotational
states of the vibrational ground state. NMR-like experiments
have been performed which revealed the impact of inter-site
pair-wise dipolar interactions on the decay of the contrast
of a molecular Ramsey interferometer. This experiment was
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Figure 41. Spin dynamics of chromium atoms as a function of
lattice depth, reprinted figure with permission from [355], Copyright
(2016) by the American Physical Society: (a) simple representation
of the system close to the Mott-to-superfluid transition. Atoms
interact both due to intersite (white ellipse) and on-site (black
ellipse) interactions. (b) Measurement of the spin components

(my = —3 tomy; = 1) as a function of time for a lattice depth of 16Er.
(d) Time evolution the ratio between populations in m; states —3 and
—2, for four different lattice depths (27Er, 16Er, 11.5Er, and 3Er,
from top to bottom). Lines are guides for the eye resulting from fits.

performed in a rather dilute environment with a filling factor
of typically 5-10%, and tunnelling was absent to prevent
inelastic collisions when two molecules physically meet [129].
In a latter study, the experimental results were compared to a
new theoretical model based on a cluster expansion technique,
and an extremely good agreement was found [778].

In the Cr experiment [256], a BEC was loaded in a 3D
optical lattice, which, at large lattice depth, led to the pro-
duction of a Mott insulating state with a core with double
occupancy and a shell with unit filling. Spin dynamics was
studied after spin excitation in a well-defined state. The exper-
iments revealed a non-equilibrium spinor dynamics resulting
from inter-site Heisenberg-like spin-spin interactions provided
by non-local DDI. While MF theories could not reproduce
the experimental data, a model based on exact diagonalization
techniques on a plaquette provided a good agreement with the
experiment for short times. This showed the many-body char-
acter of spin dynamics, and the importance to take quantum
correlations into account. For doubly occupied site, a complex
spin dynamics was observed, involving both short-range inter-
actions and intersite DDI. This experiment therefore showed
the potential of lattice gases made of strongly magnetic atoms
for the study of quantum magnetism of high-spin systems.

In another set of experiments, the group in Villetaneuse
also studied the impact of the lattice depth on spin dynamics
[355, 782]. The experiment unveiled a smooth crossover from
a complex oscillatory behaviour to an exponential behaviour
of the spin populations throughout the Mott-to-superfluid
transition, as shown in figure 41. The experiment provided
data in the intermediate regime between superfluid and Mott
insulating, where dipolar interactions, contact interactions,
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and superexchange mechanisms compete. In this strongly
correlated regime, spin dynamics and transport are coupled,
which constitutes a challenge for theoretical models of
quantum magnetism. As exact modelling of the experimental
dynamics exceeds the capabilities of classical computation,
experimental results in [782] were compared to approxim-
ate models. The comparison between experimental data and
theory demonstrated that the dynamics at low lattice depth
is qualitatively reproduced by MF calculations based on the
Gutzwiller ansatz. In this regime, it was found that transport
and contact interactions both play an essential role in spin
dynamics; on the contrary, only a BMF theory could account
for the dynamics at large lattice depths, which is then mostly
driven by dipolar interactions [782].

The potential offered by magnetic atoms to study out-of-
equilibrium quantum magnetism was recently further demon-
strated by two works that realised clean instances of the
above-described XXZ Heisenberg model [263, 777]. The
experimental systems were prepared in order to form large
unit-filled arrays of magnetic atoms in deep lattices. An out-
of-equilibrium dynamics, occurring under the pure effect of
intersite DDI, was initiated by preparing the atomic assembly
in a given spin state. In the first study [777], the first shell from
a Mott insulator made of bosonic Cr was isolated and a spin
excitation was performed by tilting the spins with respect to
the magnetic field orientation (quantisation axis), yielding a
coherent spin state. In the second study [263], a band insulator
of fermionic Er was realised (ensuring single filling from Pauli
exclusion principle) and the spin excitation was performed by
fully transferring the population from the lowest m = —F-state
to an excited m-state, thus forming a spin Fock state. In both
studies, the dynamics was observed directly on the evolution
of the m-states populations. The effect of quantum correla-
tions on the dynamics was demonstrated by discrepancies in
the comparison with MF theories.

The good agreement with simulations based on a general-
isation of the discrete truncated Wigner approximation [783]
to the case of large spins, additionally proves the role of
quantum correlation and shows that the spin dynamics leads
to a growth of entanglement. In [777], this was characterised
by a calculation of the Renyi entropy. Here, the role quantum
correlations was observed to increase when the initial tilt-
ing angle with respect to the magnetic field approaches 7 /2.
Experimentally, the isolated ensemble of atoms approaches
an effective thermal equilibrium, in the spirit of the Eigen-
state Thermalisation Hypothesis [784-786], in which the
growth of entanglement conveys a thermal character to local
observables.

By performing a Ramsey experiment and analysing the
contrast of the interferometer as a function of time for
the ensemble of unit-filled Cr atoms, it was also observed
that, during spin dynamics, the collective spin length of the
atoms decayed under the effect of DDIs, as was theoretically
expected [774]. Interestingly, for a pure homogeneous system,
the dynamical reduction of the collective spin length is a purely
BMF effect. The results in [578] show that the decay of the
spin length was slower than expected by a spin model of frozen
particles, a finding that could not be previously deduced from
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the measurements on population dynamics. This illustrates
how measurements of spin coherences provide valuable and
complementary information on quantum many-body systems,
and shows that further experiments as well as new observables
are needed to fully characterise the growth of correlations in
this system.

In [263], the rate of the spin dynamics was additionally
tuned thanks to the two distinct knobs available to control
the single-spin-state energies. The level spacing could thus be
tuned to be equal, providing a resonant condition for the spin-
exchange process of Hy.. The two control knobs are the light-
shift induced by off-resonant laser beams (e.g. the one form-
ing the optical lattice potential, see also section 2.3) and the
Zeeman effect induced by the bias magnetic field. While both
effects also exist for bosonic Cr, the missing point lies in the
existence of quadratic Zeeman shifts (induced by the hyper-
fine structure of the fermions) which can be tuned to com-
pensate the quadratic light shifts in the case of fermionic Er.
This exquisite control enables a thorough investigation of the
secular Hamiltonian. The large quadratic light shifts can be
additionally used for a fast (and potentially local) control of
the spin dynamics. Patscheider et al [263] additionally stud-
ies the effect of the excited m-state on the rate of the initial
spin dynamics, deducing a universal scaling, independent on
the detail of the initial preparation and probes the effect of tilt-
ing the quantization axis compared to the lattice geometries,
providing first steps towards more generic lattice models.

These first experiments reveal that dipolar lattice gases
provide a new arena with which to study an exotic quantum
magnetism of large spin systems, driven by the competition
of long-range and short-range interactions and of tunnelling.
From the theoretical point of view, the full description of such
a system in the presence of tunnelling (thus being analogous to
the t-J model of magnetism) is already a challenge. From the
experimental point of view, a number of challenges remain
ahead. Here, we only point a few of the challenges and per-
spectives for magnetic atoms:

o Impact of quantum statistics: Up to now, experiments
were only performed with bosons or with fermions in the
frozen regime. The study of fermions in presence of tun-
nelling would be extremely interesting, with an expected
interplay between spin and motional dynamics, and the Pauli
exclusion principle.

Revealing the expected growth of entanglement in large
spin systems: The use of entanglement witnesses is a pos-
sibility, although preliminary studies show that the exten-
sion of the existing witnesses to large spins is not straight-
forward nor favourable. Bipartite entanglement could also
be revealed by in situ measurements of spin fluctuations.
Magnetic phases: Up to now, only out-of-equilibrium
experiments have been performed. The magnetic ground
state close to zero temperature remains out of reach of our
current technology, limited by a rather large entropy. How-
ever, the analysis of the equilibrium state reached after spin
dynamics has occurred is also an interesting avenue for
future research, which is readily accessible. For example,
the nature of the equilibrium state, the presence of quantum
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correlations within it, and how it differs from a thermal state,
are open questions. Likewise, the study of the nature of this
quasi-equilibrium state as a function of the lattice filling
factor, and as a function of entropy, is also a very interesting
question related to many-body localisation.

8. Perspectives

The present time is highly exciting for research based on mag-
netic atoms. Many substantial advances are being made at
an impressively rapid pace. New experimental apparatus are
coming online soon and promise to bring even more excite-
ment. State-of-the-art techniques, recently implemented in
other ultracold-atom experiments, will soon become avail-
able in lanthanide experiments. These promising to shed new
light on the physics that has been revealed within the few last
years. For example, single-atom ‘quantum gas’ microscopes
are well-poised to reveal additional details regarding the strong
correlations of the many-body states that have been observed
both in bosonic and fermionic dipolar quantum gases as well
as open the way to extend investigations of their far-from-
equilibrium dynamics. Control on the single-atom level will
also provide novel understanding, at the few-body level, of
scattering phenomena in these complex lanthanide systems.
Complete magnetic shielding will enable the exploration of the
zero-field regime of spin physics. Exploiting the rich optical
transition spectrum of the lanthanides will also provide novel
capabilities for controlling spins and interactions more exquis-
itely. The prospect of realising topological quantum states is
one of many central aims.

Highly versatile trap geometries will also play a role and
provide new prospects for exploring the interplay between
the anisotropic and long-range character of the DDI and
the geometry of the system. Other ingredients, such as dis-
order and frustration could also be added to the systems. The
mixture of different magnetic and non-magnetic species will
reveal new physics, and in particular, could provide access to
dipolar physics with an internal degree of freedom and distinct
dipolar moments but without dipolar relaxation. Mass imbal-
ance effects could also be explored. This opens new avenues
towards exotic few-body as well as many-body phenomena,
including Efimov states, p-wave superfluidity, and other exotic
states of matter. One cannot capture all the possible new dir-
ections enabled by highly magnetic atoms, but undoubtedly,
brand-new physics will arrive in the next years, and we hope
for new surprises to match those this review has presented.
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