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Spin glasses are canonical examples of complex matter [I]. Although much about their structure
remains uncertain, they inform the description of a wide array of complex phenomena, ranging from
magnetic ordering in metals with impurities [2] to aspects of evolution, protein folding, climate
models [I} [3], combinatorial optimization [4] 5], and artificial intelligence. Indeed, spin glass theory
forms a mathematical basis for neuromorphic computing and brain modeling [6HI0]. Advancing
experimental insight into their structure requires repeatable control over microscopic degrees of
freedom. Here, we achieve this at the atomic level using a quantum-optical system comprised of ul-
tracold gases of atoms coupled via photons resonating within a confocal cavity. This active quantum
gas microscope [I1] realizes an unusual type of transverse-field vector spin glass with all-to-all con-
nectivity. Spin configurations are observed in cavity emission and reveal the emergence of replica
symmetry breaking and nascent ultrametric structure as signatures of spin-glass order [3]. The
driven-dissipative nature of the system manifests as a nonthermal Parisi distribution, in qualitative
correspondence with Monte Carlo simulations. The controllability provided by this new spin-glass
system, potentially down to the quantum-spin-level [I2], enables the study of spin-glass physics in

novel regimes with application to quantum neural network computing [13].

The Sherrington-Kirkpatrick (SK) spin-glass model de-
scribes an all-to-all spin network with couplings of ran-
dom sign [3 [T4]. A rugged free energy landscape arises
due to quenched disorder and geometric frustration. Er-
godicity is broken: When cooled, exact system copies
may relax into distinct thermodynamic regions of the
high-dimensional spin-configuration space. These copies,
called replicas, can be nonidentical (not merely under a
global spin flip). Surprisingly, the overlaps among replica
configurations exhibit an ultrametric, tree-like structure
that emerges below the critical temperature T, separat-
ing the SK spin glass from the paramagnet [I5]. This
is replica symmetry breaking (RSB), the phenomenon
Parisi proposed in the 1970’s and 80’s as the first solution
to a spin glass model; the theory’s broad application to
complex systems earned Parisi the 2021 Nobel Prize [16].

That replicas of a system are different, yet delicately
correlated, is a bizarre consequence of the nonlocal,
infinite-dimensional nature of the SK model. Determin-
ing whether some form of RSB exists for 3D materials
with short-range coupling remains a grand challenge in
statistical physics; other spin-glass theories are hard to
distinguish from RSB scenarios using numerical simu-
lation [I, I8]. A resolution might require experimen-
tal input, though lack of microscopic control hampers
experiment-theory comparison.

Spin frustration and disorder have been separately re-
alized in controllable systems using trapped ions [19]
20] and cavity-coupled atoms [2I]. We simultaneously
achieve both using multimode, confocal cavity QED,
as suggested in [12] [13] 22H24] and discussed further
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FIG. 1. Experimental system and spin detection. (a) Sketch
of the confocal cavity QED apparatus. Atomic gases (eight
colored balls) at vertex positions r; of the network are pumped
with a transverse field (red) and scatter light into local (mul-
ticolored) and nonlocal (light blue) components of the cavity
field. Neither the mirror-image field components at —r; nor
the lasers trapping the atomic gases are shown. A portion of
the pump mixes with cavity emission and illuminates a cam-
era for holographic imaging; Ref. [I7] discusses the analysis
required to account for optical aberrations and spin-angle in-
homogeneities. (b) Example of a reconstructed hologram of
cavity emission for a coupled network of eight atomic gases.
The eight bright spots are the local fields coupled to each gas.
The arrows here and below indicate the spin vector direction
0 derived from the electric field phase ¢. The scale bar length
here and below is wo. (c¢) Color map indicating the electric
field amplitude |E| and phase.

in [25H27]. Moreover, while RSB in nonlinear optical



devices has been reported for non-SK systems [28-31]
(and incipient glassiness in networks of superconduct-
ing circuits [32] 33]), we observe RSB with minute pro-
grammable control over the quenched disorder. Micro-
scopic spin readout from our quantum-optical system al-
lows for direct experimental comparison to SK predic-
tions. Its driven-dissipative nature manifests in nonther-
mal order parameter distributions. While this work ad-
dresses long-range spin-glass physics, it opens the door
to experimental explorations of the order in short-range
3D spin glasses as well as those exhibiting quantum spin
correlations and dynamics [12].

Figure [lp sketches the apparatus and Ref. [I7] dis-
cusses the confocal cavity QED system in detail. Briefly,
a pair of mirrors separated a distance equal to their ra-
dius of curvature confine many electromagnetic modes
at nearly the same frequency. An array of optical dipole
traps place n = 8 ultracold gases of 8"Rb atoms at differ-
ent locations r; within the cavity midplane z = 0. These
form the n vertices of the spin network. Each vertex con-
tains N = 2.3(1) x 10° atoms within a radius o4 ~ 4 ym
centered at r;. They are evaporatively cooled to slightly
below the Bose-condensation temperature [I7]—matter-
wave coherence is unimportant to this work.

A standing-wave transverse pump at A = 780 nm and
oriented along Z scatters photons off the atoms in each
vertex and into a superposition of cavity modes that is
peaked at that location [I1], 24]. When we linearly in-
crease the pump’s power &< Q2 through the superradiant
threshold of a Hepp-Lieb-Dicke transition [34], the atoms
in each vertex ¢ spontaneously break translation symme-
try by spatially ordering into a density wave along Z.
The atoms choose a spatial phase 6; that maximizes the
local field amplitude at the vertex’s position. However,
the field of the confocal cavity is not perfectly localized
and has a weaker, long-distance tail that is quasirandom
in space [24] 35, B6]. When there are two vertices in
the cavity, the nonlocal, long-range part of the field due
to vertex 1 explicitly breaks the translational symmetry
for vertex 2 and vice-versa. This leads to an interac-
tion Jio between the symmetry-breaking phases of the
two vertices [35], B0]; extending to many vertices directly
follows.

Because the phases 6; lie on a circle, we model each
as an XY vector spin. The connection to a vector
spin model is made by writing the photon-mediated in-
teraction energy in terms of collective spin components
S¥ = cosf; and S} = sin6;:

Z [Jij (STS7 — SYSY)+Ky; (S7SY +S!S7) ],

ij=1

Eint = -

(1)
where J;; & Jocos Ri;, Jo = N2g3Q?/(8A%|Ac|), and
Rij = 2I'i'I'j/’LU(2). The Kij ~ (40’21/11}%)J0RU sin Rij term
arises from the finite extent of each vertex in the imper-
fect confocal cavity. The total system energy is that of a
transverse-field vector spin model with a transverse field
strength proportional to E;, the atomic recoil energy;

see [I7] for the full quantum Hamiltonian description.

Equation applies in the far-detuned limit, where
the pump is red-detuned by Ag = —27-60 MHz from
the near-degenerate cavity resonances; both cavity and
pump are Ay = —27-97.3 GHz from the atomic reso-
nance. The waist wg of the cavity’s fundamental mode is
35 um, and gq is the single-atom coupling strength to this
mode. The multimode single-atom cooperativity in the
dispersive limit is Cyy, = 110 [II]. Thus, this quantum-
optical system acts as an active quantum gas microscope:
The intracavity field mediates strong atomic interactions
while the cavity’s large effective numerical aperture al-
lows us to holographically image the intracavity field at
z = 0 with a resolution of 1.7 gm [II]. This is smaller
than the width o4 of each vertex. Figure [Ip presents
an example image taken at a pump power 25% above
threshold, well within the spin-ordered phase.

We now discuss the phase portrait realized by Eq. .
At small Q, the system is in a normal (i.e., paramag-
netic) phase that weakly scatters incoherent light into the
cavity. Superradiant scattering ensues at large pumping
strength, and the spins order either as a ferromagnet or
spin glass depending on the values of J;;. For K;; suf-
ficiently smaller than J;;, as is the case here, Eq.
favors an - (y-)ferromagnet when all J;; > 0 (<0) or
a spin glass when J;; are disordered. By disorder, we
mean J;;’s that are both randomly signed and of random
magnitude between +Jo/N = +27-2.0(1) kHz. (This in-
teraction timescale is several-times shorter than the few-
hundred-ps interval between reaching threshold and be-
ginning holographic imaging.)

Ferromagnets differ from paramagnets and spin glasses
in their nonzero magnetization order parameter m* =

n
i Zl<Sz” ), where (-) indicates time average and, for vec-
=

torispins, we define p € {x,y}. Distinguishing between
the paramagnet and spin glass requires another order pa-

n
rameter, the spin overlap ¢hj; = + >° (SHY(SPY | where

i=1

a and B are replica indices [3]. The overlap is always zero
for a paramagnet but is nonzero for the ferromagnet and
spin glass due to their frozen spin order. In the follow-
ing we focus on two linear combinations of the overlap:
Qap = €55 + qz% and Rag = qz% — 4%

Before we present measurements of spin-overlap dis-
tributions, we discuss how these overlaps distinguish dif-
ferent phases. For an xy-vector ferromagnet, the spin-
overlap distribution lies on the boundary of the square
spanned by the allowed values of the overlap matri-
ces, |Qas| < Qaa and |Reg| < |Raal- Both Q.. and
|Rao| = 1 near T = 0 and in the measurements presented
below. By contrast, a spin glass has nonzero overlaps in
the interior of this square [37, [38]. This is the signature
manifestation of RSB [3]: Even for identical initial con-
ditions, thermal (or quantum) fluctuations during spin
ordering drive replicas into distinct, energetically discon-
nected regions of the rugged free-energy landscape. This
breaks ergodicity, yielding many non-spin-flip-symmetric



thermodynamic states that may be accessible to different
replicas. Structure emerges from broken symmetry [39],
and that which arises in the SK spin glass is the ultramet-
ric structure of overlap distances Dog = 1—|Qqs| [40]. In
other words, RSB implies that the D,g satisfy the strong
triangle inequality, Do, < max{Dug, Dg~}, among any
triplet of replicas.

Figures [2h,e present reconstructed images showing
zFM and yFM states, resp. Repeating the experiment
with identical positions allows us to compile a set of
900 replicas. We construct the magnetization and spin-
overlap distributions shown in Figs. [2b,c,f,g. These ex-
hibit the expected near-maximal magnetization and over-
lap ‘goalposts’ of ferromagnets at ¢5% = +1 (g1 = £1)
for zFM (yFM). The slight tilt of the yFM magnetiza-
tion, as well as the non-maximal qg%’s, are caused by
the K term [17]. Figures 2l,h show energy distribu-
tions of the xFM and yFM replicas, resp. While the
minimum ferromagnetic energy is rarely found, the effec-
tive temperature is well within the ordered phase. (The
paramagnet-to-ferromagnet 7, is found using parallel-
tempering Monte Carlo [I7].) The correspondence to an
equilibrium distribution is remarkable despite the likely
presence of technical noise and Landau-Zener transitions
between nearby states at threshold. Cavity emission
above threshold is known to couple the system to an ef-
fective thermal bath [I3] [41], and the FM’s near-thermal
behavior might imply that a thermal-like, steady-state
equilibrium has been reached.

We now create a spin glass by moving the vertices to
realize a disordered J. Figures [Bp—d show four distinct
replicas of the same glassy J. These exemplify the multi-
tude of configurations accessible within the glassy rugged
landscape. The spin-overlap distributions in Figs. [Bp-h
are compiled from 100 experimental replicas each but are
taken with different pump ramp rates. The rate used for
panel (f) is the same as that used for the images in panels
(a—d), as well as the ferromagnetic data in Fig. |2l This
ramp rate is sufficiently slow to observe overlap peaks at
Qaop = *£1, in addition to multiple a # § peaks in the
distribution interior. This structure is consistent with
the presence of RSB.

Increasing the ramp rate by a factor of two blurs these
peaks while reducing the overlap goalposts, as seen in
Fig.[Bk. Presumably, more Landau-Zener transitions lead
to a glass with higher-mean-energy (Ei,;) that explores
more configurations in the rugged landscape. (We have
not been able to ramp fast enough to image the para-
magnet.) Conversely, slowing by a factor of two creates
sharper, more sparse overlap peaks, as shown in Fig. Bl.
Because we have a finite-sized system, RSB disappears
when further slowing the ramp, producing distributions
with lower (Ei.). As shown in Fig , the ground-
state spin configuration dominates the distribution when
(Eint) drops below the first excited state.

We now provide evidence for nascent ultrametric struc-
ture in the (Qop. Hierarchical clustering is performed
to iteratively combine the replicas into groups that
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FIG. 2. Demonstration of two ferromagnetic states. (a—d)
Data in support of an xFM-state arising from vertices po-
sitioned to realize an effective J;; > 0 network. (a) Rep-
resentative reconstructed image showing a cavity field with
vertex phases of a spin configuration ordered along . A lo-
cal m gauge rotation was applied to the vertices indicted by
dashed circles [I7]. (b) Magnetization distribution m*. (c)
Distribution of overlap components Q.3 and R.g between
pairs of replicas. (d) Histogram of the energy of each zFM
replica, normalized to the magnitude of their ground-state en-
ergies. Fitting with a Maxwell-Boltzmann distribution (red
line) yields an effective temperature 7/7T. = 0.080(8). (e-h)
Similar data for an effective J;; < 0 network realizing a yFM
state. (h) T'/T. = 0.10(1).

minimize the average distance 1 — |Qqp| within those
groups [42]. This allows the visualization of ultrametric
relationships as block-diagonal structures in |Qaps| [40].
This is shown in Figs. Bj-1; see Ref. [43] for the leaf sort-
ing algorithm. For example, Fig. B} shows at least six
clusters. Off-diagonal rectangles of lighter shade provide
evidence of multistep RSB structure; the three distinct
shades indicate that at least three thermodynamics states
contribute to the spin glass order [II,44]. (The clustering
hierarchy becomes trivial for the slow-ramp case in panel
(1).)

Ultrametric structure may also be visualized as a
family-tree-like dendrogram [IJ, [40]. These are shown
above the |Qap| matrices. Replicas are the leaves at
the lowest generation level. The overlap between two
replicas is approximately the value of the distance of the
topmost branch connecting them. Limbs are colored to
denote near-kin families, which are the emergent clusters
of |Qupl- A quantitative analysis based on the strong
triangle inequality [45] is presented in [I7].

Figures[@b-d show overlap distributions for three addi-
tional realizations of disordered J-matrices. They differ
from both each other and the overlap in Fig. [3f (repro-
duced in panel )7 demonstrating the strong dependence
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FIG. 3. Spin-overlap distributions of the vector spin glass versus ramp rate. (a—d) Reconstructed images of the four most
commonly found spin configurations for the same representative disordered J. These spin states are found in 45%, 26%, 9%,
and 5% of the 100-total experimental replicas, resp. (e-h) Overlap distributions versus ramp rate for the same disordered J.
The rate of increase of the pump lattice depth is, in F,/ms: (e), 1100; (f), 45; (g), 23; and (h), 11. The mean energies (FEine)
of these states, normalized by the ground-state energy |Egs|, are: (e), -0.75(1); (f), -0.84(1); (g), -0.88(1); and (h), -0.926(4).
Panel (f) also indicates the particular replica pairs from panels (a—d) contributing to each major peak. The peaks are denoted
a:f using the panel tags a, b, ¢, and d as replica labels. Shown below are the 1D marginal distributions; i.e., histograms of the
number of replica pairs at each value of Qag. (i-1) Hierarchically clustered |Q.s| matrices with family-tree-like dendrograms
are shown for each ramp rate. The states in panels (a—d) are contained in the four distinct clusters outlined with squares in
panel (j). The squares are color-coded to match the associated branch of the family-tree-like dendrogram drawn above. The
distance of each branch is calculated based on the average of overlaps within the limb below it. Color-coding is used for families
below a distance of 0.4, which corresponds to clusters with spin configurations separated by approximately two spin flips.

of spin overlaps on disorder realization. This is expected
of a glass, where the energy gaps and rugged-landscape
topography can sensitively depend on disorder details.

Attempts to accurately simulate these overlaps with
parallel-tempering Monte Carlo [46], 47] based on Eq.
are hampered by the inherently nonequilibrium nature
of the experiment. That is, once glassy, this driven-
dissipative system may not necessarily yield spin config-
urations corresponding to a thermal equilibrium. Indeed,
we find that there is no simulated temperature at which

all features are reproduced correctly [I7]. At high tem-
perature, all peaks are reproduced, but they are blurred
due to thermal fluctuations. While the peaks are sharper
at low temperature, some overlap peaks are missing since
they arise from higher-energy configurations. Instead, we
perform an ad hoc simulation that mimics some nonequi-
librium effects by halting a rapid-annealing simulation
before it reaches equilibrium [I7]. The simulation uses
the J and K-matrices derived from direct observations
for each disorder realization [I7]. The resulting numer-
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FIG. 4. Comparison of experimental and simulated spin overlaps and Parisi order parameters. (a-d) Each of these experimental
overlap distributions is realized by moving the vertices to different sets of positions that realize four different disorder realizations
J. Each of these overlaps are derived from 100 experimental replicas and share the same color scale. (e) The experimental Parisi
order parameter distribution formed by averaging 123 overlap distributions, each with a different disordered J-matrix. (f-i)
Numerical simulations using as input the experimentally measured Js in panels (a-d). (j) Numerical simulation of the Parisi
order parameter distribution using J-matrices calculated from observed positions. (k) 1D marginal histogram of the Parisi
order parameter distribution in panel (e). Dashed lines indicate allowed overlap values for a binarized (Ising) 8-spin system.
The red trace is the 1D marginal histogram from panel (j). (1) Experimental and (m) numerical magnetization distributions

averaged over the same experimental ensemble as above.

ical overlap distributions are shown in Figs. [f-i. The
results in panels (f-h) are in qualitative agreement with
the experimental ensemble, but some, like that in panel
(i), are far off.

Specific disorder details cease to play a role in the large
system-size limit of non-glassy systems. By contrast,
the values of ¢/ are different for different disorder re-
alizations of J, implying a lack of self-averaging because
multiple thermodynamic states contribute. A thermody-
namic quantity that is independent of microscopic disor-
der details appears if we take the disorder average (qf}f YJ
over all J realizations. This is the Parisi order param-
eter [48], which exhibits a smooth distribution of Qg
between the +£@Q,, goalposts and whose shape is deter-
mined by temperature via the Gibbs measure [IJ.

To measure the Parisi order parameter, we average the
experimental overlap distributions in Fig. [fh—d, plus 119
others (each compiled from 100 experimental replicas).
The result is shown in Fig. ; see [I7] for assessment of
ensemble randomness and convergence. The 1D marginal
distribution in Fig. [k exhibits continuous support be-
tween the overlap goalposts; this signature of RSB is
also found in the Parisi distribution of an SK Ising spin
glass [I]. However, we observe several peaks between the
goalposts rather than a smooth distribution. Overlaid
on the plot are n + 1 = 9 equally spaced vertical dashed
lines set at the allowed overlap-value locations that would
be found in an Ising network of n = 8 vertices. That the
peaks in the data match these positions suggests that the
vector spins are weakly binarized along the @ quadrature.

A Monte Carlo simulation using a rapid-annealing
schedule is shown in Fig. 4 and reproduces some of this
striped behavior, as is clear from the marginal shown in

red in Fig. . (As above, the simulation uses the exper-
imentally characterized J and K-matrices [17].) Simula-
tion discrepancies might also arise from an unidentified
easy-axis energy term or from nonlinearities arising dur-
ing the imaging sequence [I7]. Alternatively, the stripe
effect could be intrinsic to the nonequilibrium system. A
parallel-tempering simulation also failed to faithfully re-
produce the data [I7]. As with the overlap distributions,
it seems that neither an equilibrium (parallel tempering)
nor a nonequilibrium (rapid simulated annealing) simu-
lation reproduces all details of the experimental Parisi
order parameter distribution.

A spin glass should also have zero average magnetiza-
tion. The experimental disorder-averaged vector magne-
tization is shown in Figs. [4l, and it is centered around
m = 0 as expected. In contrast to overlaps, simulations
similar to those performed above do capture the magne-
tization distribution width; see Fig. fjm.

Future work will attempt to improve the correspon-
dence with simulation by developing more sophisticated
nonequilibrium numerical techniques and by experimen-
tally exploring longer-term spin evolution. Improvements
to atom trapping and cavity-emission imaging will enable
larger network sizes. Measurements of dynamical suscep-
tibility may reveal aging effects in this novel vector spin
glass. Last, we note it is possible to realize short-range,
RKKY-like interactions [49], and we have already created
small, frustrated Ising-spin networks in this confocal cav-
ity QED system [50].
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I. EXPERIMENTAL METHODS
A. BEC preparation

Atom cooling and trapping follows Refs. [35, [5I] with additional steps taken to produce eight atomic clouds that
serve as the spin network vertices. We employ time-multiplexed RF signals produced by voltage-controlled oscillators
to drive acousto-optical modulators to dynamically shape the trap. Specifically, we begin by creating a cloud of
2.5(2) x 10° 8"Rb atoms at a temperature of 548(8) nK held in two dithered, crossed optical dipole traps. Subsequently,
the dithered drive signals are adiabatically deformed into a step-ladder waveform with 2 and 4 steps, resp., resulting in
the initial atomic cloud being split into a 2x4 grid of smaller, well-separated clouds. The amplitudes of the steps in the
dither drive determine the vertex positions, while the duty cycle for each step controls the relative atomic population
per vertex. The population in each resulting gas cloud is balanced to contain ~2.3(1) x 10° atoms. Each has a
temperature of 440(60) nK measured with time-of-flight imaging. This temperature is near the critical temperature
for Bose-Einstein condensation (BEC), resulting in a BEC fraction of ~11%. The relatively large thermal fraction
causes a shift of the superradiant phase transition point [52], but does not further affect superradiance.
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FIG. S5. Transmission spectroscopy of the confocal cavity used in this work. A spot of waist 32 um aimed 80 pm radially from
the cavity center is used to probe the cavity. The detuning of the transverse pump beam is indicated by the black arrow.

Some calibration experiments require isolating a single vertex, such as measuring trap frequencies and atomic shape,
or for imaging the nonlocal field from a signal vertex. This is accomplished by first preparing the full network of
eight vertices, then switching the RF drives to a single tone, instead of the time-multiplexed tones. This allows us
to remove the trapping potential at all vertices but the site of interest. We then wait 400 ms to let the atoms in the
other vertices fall under the force of gravity. The time-multiplexed RF drive is then reactivated to recover the precise
original trap shape, but with only a single vertex populated.

Trap frequencies for each vertex are measured by first isolating the vertex of interest according to the above
procedure. The atoms in the trap are then weakly excited to stimulate a sloshing mode. Momentum oscillations from
time-of-flight imaging reveal the trap frequency. We observe vertex-to-vertex dependence of the trapping frequencies.
This is caused by the way we create the traps by dithering the trapping beams between spatial locations. The beam
spends more time in some locations than others to balance the atom populations across the vertices. However, this
also changes the trap frequencies and depths: Typical frequencies are [w,,w,,w,] = 27 x [296(10), 170(27), 170(8)] Hz,
where the standard deviation is assessed over all eight sites and two different position configurations. Error below is
also given as standard deviation.

The atomic shape at each vertex is described by a bimodal distribution. Thermal atoms contribute a Gaussian
density component while the BEC fraction of the gas contributes a Thomas-Fermi component. To simplify calculations
that involve the density profile, we approximate the bimodal distribution in the cavity transverse plane by an isotropic
2D Gaussian of 4-um standard deviation along the trap directions. This width is determined by a least-squares fit to
the full 2D bimodal distribution on the cavity midplane.

The 1/e lifetime of the atoms in an 8-vertex configuration is typically around 2 s. The transverse pump subjects the
atoms to additional heating. This reduces the 1/e lifetime to 318(16) ms for a pump lattice depth of approximately
3.8E,. Threshold is typically around 45E,, and the superradiant emission decays with a 1/e timescale of 3.5(3) ms
when holding the pump lattice depth at 1.25x threshold.

B. Cavity and pump laser

We employ a near-confocal cavity [5I] with a free spectral range (FSR) of 27-15.02980(8) GHz; its length and
mirror radius’ of curvature are both 1 cm. The finesse is approximately 5x10* and the single-mode cooperativity is
C = 2g2/kI’ = 5.2. The single-atom, multimode light-matter coupling strength is V' Mgo, where go = 27-1.47 MHz
and M = 21 is the multimode enhancement factor [II], 24]. The corresponding dispersive multimode single-atom
cooperativity is Cium = 2Mg2/kI' =110 [L1], where the cavity and atomic linewidths are x = 27-137 kHz and
I' =27-6.1 MHz.

The cavity length is stabilized using the Pound-Drever-Hall technique with a laser coupled to the cavity at
1560 nm [51]. The remaining light is amplified and frequency-doubled to provide the 780-nm transverse pump light.
It is detuned from the 525'1/2|2, —2) to 52P3/2|3, —3) transition by A4 /27 = —98.3 GHz. The pump is detuned from
the cavity resonance by A¢ /27 = —60 MHz from the lowest frequency peak in the cavity transmission spectrum. An
example cavity spectrum is shown in Fig. for a longitudinal probe beam of waist 0.9wq injected to the side of the
cavity center.

The pump laser is retroreflected to produce a standing-wave optical lattice at the location of the atoms. The
lattice depth is calibrated using Kapitza-Dirac diffraction of a BEC. During the experiment, and unless otherwise
noted, the depth of the pump lattice linearly increases by 45E,/ms for 1.5 ms. No Mott insulating phase arises at
the Ac we employ [53]. After reaching 1.25x the critical pump power, the holographic image is taken by rapidly
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FIG. S6. Cavity emission intensity (left axis, blue solid line) detected by a single-photon counter versus time after subtracting
background counts. The transverse pump power—in units of lattice depth (right axis, black dashed line)—is ramped linearly
through the superradiant threshold. Threshold is demarcated by a sudden increase in cavity emission, indicated by the red
dotted line. After ramping to 1.25x the threshold power, the state is read-out for 500 us, as indicated by the gray shaded
area. During the read-out process, the pump power is rapidly increased and the local oscillator and cavity emission expose the
camera.

increasing the pump power to 113F, and holding there for 500 us for readout of the spin state. The pump schedule
is illustrated in Fig. [S6| with an example of the measured cavity emission recorded on a single-photon counter. We
have independently verified that this imaging process does not alter the spin-organized state: Any dynamics induced
by the readout would result in reduction of fringe contrast for the evolving vertices. We do not observe such signal
reduction, other than for all vertices simultaneously, which we attribute to reduced atom number in that particular
experimental shot. Additionally, we measure the phase of the (spatially integrated) intracavity field using a temporal
heterodyne measurement. These measurements show no observable phase difference between the moment just prior
to the readout versus during the readout.

C. Holographic imaging

Detection of the spin state that emerges in the superradiant phase is achieved through holographic imaging of the
emitted cavity field, as in our previous work [35, [36] 54] 55]. The emitted field is mixed with a local oscillator (LO)
derived from the transverse pump and focused onto an electron-multiplied charge-coupled-device camera. The cavity
field and LO strike the camera at slightly different angles to produce a phase-sensitive interference pattern, realizing
a spatial heterodyne measurement. Sections [[D]and [[F] provide details about how the detected images are processed
to extract the density wave (DW) phase for each vertex.

Optical components between the cavity and camera can cause phase aberrations in the detected holographic images.
This aberration is characterized by positioning a single gas cloud of atoms at the cavity center and pumping the system
above the superradiant threshold. The emitted cavity field for this particular configuration of atoms should have a
completely flat phase front. Any additional phase must be due to aberrations. This becomes a phase mask that is
subtracted from all holographic images.

D. Processing of holographic images and spin-state extraction

We now describe how we extract the spin configuration from a recorded holographic image. As we show in Sec. [[TB]
the phase of the emitted cavity field is directly related to the spin configuration. Phase extraction is accomplished
through a fit by least-squares regression to the full field-of-view of the emitted cavity field. We account for finite-size
effects by allowing for DW phase gradients. A discussion of the origin of these gradients is presented in Sec. [[TA] and
Sec. [ICl

As we derive in Sec. [[TB] the total field is a sum over the fields generated by each vertex,

O (r) = " A; e Drocar(ri1s) + €7 o (1317)] (S2)

i=1

where the superscript F' denotes that this is the forward-propagating field emitted from the cavity, ¢ is a global
phase, A; is the amplitude of the field and 6; is the DW phase of vertex ¢, which is at position r;. While the emitted
cavity field and LO have a stable phase within the time span of a single experimental shot, there is a slow drift of the
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FIG. S7. Processing of holographic images. In all panels, the scale bar indicates wy = 35 pm and cavity center is marked by
a cross. (a) Raw holographic image of an emitted cavity field for the processed image presented in Fig. 1b of the main text.
Each vertex scatters a localized spot, with a mirror-image spot on the opposite side of the cavity. The nonlocal component of
the field produces a weaker background field present throughout the image. (b) Optimal fit obtained from the model given by
Eq. (S2). (c) The residual between the measured and fitted images in panels (a) and (b), resp. The color scale is the same as in
panel (a). (d) The resulting gradient-corrected holographic image. The upper half of this image is identical to that presented
in Fig. 1b of the main text.

LO phase from shot-to-shot that results in a different global phase ¢ that must be fit for each image. The local and
nonlocal field generated by vertex i are given by Egs. (S36]) and . These further contain the Gaussian width of the
vertex 04 and the DW phase gradient g;. Equation (S2]) is fit to the electric field obtained from holographic imaging
to determine the global parameters ¢ and o 4 as well as the parameters for describing each vertex, {A4;,0;,r;,g;}. The
spin state corresponds to the DW phases 6;. The extracted spin states are not random due to noise, as can be seen
by the specific overlap structure in Figs. 3 and 4 of the main text.

An example hologram is shown in Fig. with the corresponding best fit result in panel (b) and the residual in
panel (¢). To speed-up the fitting procedure, we downsample the observed electric field by averaging blocks of 3 x 3
pixels into single superpixels. Comparing the results from downsampled fits to full fits reveals no systematic bias,
with an root-mean-square difference between these spin configurations of less than 0.002 radians per spin across a set
of 30 images.

The images in Figs. 1-3 of the main text are corrected to remove the global phase ¢ as well as the gradient in the
phase across each vertex. The goal is to leave only the average phase. The gradient-correction term is computed as
the difference of two images; the fitted field, such as in Fig. [S7b, and the fitted field with the gradient parameters
g set to zero for the local field terms. This correction is applied to the observed image in Fig. [S7h to produce the
gradient-corrected image in Fig. [S7T. The images of ferromagnetic spin configurations in Fig. 2 of the main text have
also been subjected to a gauge transformation: A subset of the vertices receive a local 7 phase shift; see Sec. [[TF]for
an explanation.

E. Atomic position calibration

The positions of the atoms are confined to the z = 0 midplane of the confocal cavity. In order to locate this position,
we do an interferometric measurement of an intracavity lattice injected longitudinally. Specifically, we address the
cavity with two different wavelengths separated by an integer multiple Aq of the FSR. The difference in spatial phase
between the lattices created with these two wavelengths changes as a function of z as Agg%(2z + L) and can be
measured by a multipulse Kapitza-Dirac measurement.

This kind of measurement relies on accurate knowledge of the longitudinal spatial phase of the intracavity lattice.
This is challenging in a confocal cavity, since the longitudinal character depends strongly on the transverse mode
content of the light field being injected [35, B6]. Instead, we perform this measurement with the length of the
cavity set to a single-mode configuration, where the TEMyy mode, which has a known longitudinal spatial phase
dependence, can be isolated and addressed. By accounting for the known change in cavity length between this single-
mode configuration and the confocal configuration employed in this work, we are then able to position the atoms to
within 10 pgm of the midplane.

To transversely position the atoms in the z = 0 midplane, we rely on the local-field emission of the confocal cavity,
which can be imaged with high resolution [11]. We extract the position(s) by fitting the superradiant cavity emission
as described in Sec.
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F. Data processing

We perform a minimal amount of data processing after fitting the cavity fields to reconstruct the spin state, as
described above in Sec.[[D] We exclude experimental shots where the fitter does not provide a reasonable set of atomic
vertex positions based on approximately known trap positions. This occurs in ~8% of the experimental shots.

Comparing all observed positions to the target positions, we find that the fluctuations in vertex position are
distributed as an isotropic Gaussian. The shot-to-shot position fluctuations have a standard deviation of 0.73 pm.
This position noise induces a small amount of variance in the quenched disorder in the coupling matrix from shot-to-
shot. We estimate the effect of this on the overlap distribution by using simulated-annealing simulations. A set of
replicas are cooled down to ~0.057, with 0.73 pm standard deviation Gaussian noise added to the atomic positions
for each replica. Each replica thus has a slightly different J matrix. The equilibrium overlap distribution between
replicas is computed after annealing to low temperature. The overlap distribution with noisy positions is compared
to the distribution with no noise. We find a correlation with the noise-free overlap distribution of greater than 90%,
averaged over many sets of positions.

For a given position configuration, we require 100 experimental replicas after filtering to produce a sufficiently
converged overlap distribution. See Sec. for a discussion of convergence of the overlap in terms of the number of
replicas. Any additional replicas are discarded to keep constant the number per disorder-instance at exactly 100.

II. CONFOCAL CAVITY QED SPIN MODEL

For simplicity, the atoms in each of the n = 8 atomic gas clouds are approximated as being in a BEC, allowing
each ensemble to be described by an atomic field operator ;(x). After elimination of the atomic excited state, the
Hamiltonian is:

H=— Z A/Ld:ﬂd# + Z HA,z‘ + Z HLM,ZH (S3)
L i=1 i=1
N o V2 ~
fai = [Pl (3 +V60)) i) (s1)
fiani = 5 [ XU} 0B 00, (x) (55)
A

The individual cavity modes are indexed by p. The pump detuning is A, and photon annihilation operators are a,,.
The externally applied trapping potential is given by V(x). The trap potential contains 8 minima that define the
locations of the vertices of the network. The minima occur at locations x; and are anisotropic with trap frequencies
Wzy,-- We neglect s-wave scattering between atoms because it results in only a small shift of the superradiance
threshold [56].

The light-matter Hamiltonian Hp s contains the total light field ®¢(x) = Qcos(k,qz) + go®(z). The first term is
the standing-wave transverse pump, where the Rabi strength is Q, k. = 2w/ is the recoil momentum, and A is the
wavelength of the light. The second term contains the total cavity field operator <i>(x); the single-mode, single-photon
interaction strength is go. The cavity field is expressed in terms of individual modes as

d(x) = Z a, =, (r) cos (kyz —0,). (S6)

This expression assumes that |z| is much smaller than the mode’s Rayleigh range (5 mm in this confocal cavity),
which is satisfied since typical z are less than 10 um. A mode-dependent phase shift 6,, = n,m/4 serves to satisfy
boundary conditions in the cavity, where n, = [ 4+ m. The transverse-mode function near the cavity midplane is

Eu(r)=H (\@x/wo) H,, (\/iy/w0> exp(—r?/wg), (S7)

where H,(z) are the Hermite polynomials. We use r to denote the in-plane part of the general coordinate x. Only
families of modes with all even or all odd n, are simultaneously resonant; we focus on an even resonance, and so all
sums over p are implicitly restricted to n, = 0 mod 2. This results in cavity modes that alternate in longitudinal
shape between cos(k,z) and sin(k,z) [35] 36].

The atomic degrees of freedom develop a DW of wavevector k,. at the superradiant transition. This can be described
by writing the atomic field operators in a basis containing the DW excitations,

U, (x) = VE(x —x) wo,i + 2t i cos(kyz) cos(kpx) + 20 i sin(kyz) cos(k,.x)] . (S8)
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The operators z/AJm', where o € {0,¢,s}, are independent bosonic modes with canonical commutation relations
[1/3071-,12);]-] = 0,,0;; and [1/3071-,12177]»] [wm,z/)i’j} = 0. These operators describe excitations of the BEC ground
state, cosine DW, or sine DW, respectively. The envelope function F(x) is assumed to be identical for each vertex.
The position of vertex i is x; = (r;, 2;), where we take all vertices to be in the midplane z; = 0 and r; denotes the
2D position in the midplane. Normalization of the field operators is achieved by choosing an envelope function for
which [ d*xE(x) = 1. We note that this atomic ansatz ignores higher-order corrections involving Mathieu functions
that describe organization in a deep lattice [55]. This results in a renormalization of only the superradiant threshold,
which is unimportant to this work.

To proceed, we insert the expansion of the atomic fields into Eqgs. and and evaluate the integrals. We
assume that the extent of E(x) is large compared to A, allowing us to drop fast-oscillating terms. For H A,i, this
results in

Hy,; =2E, (7/;;1[%1 + J’Zﬂkz) + Etrap,i (7/;3,#[’0,1‘ + Q/A’Iﬂ/;m + 7/3211[)91) ) (S9)

where E, = h*k2/(2m) is the recoil energy and Eiy.p; = [ d®xV (x)E(x — x;) is the trap energy. Evaluation of the
light-matter coupling produces three terms,

Hngs = (Bt + 20 s + 2000
LM,Z_QAA 0,5 70,3 2 c,i e, 2 5,1 78,1
gOQ ~ ~t ~ . ~ 2 o
g D+ ) N0, 40,5 [ ot~ )z, (510)
2
90 ot 7 At A
+ ﬁ%,i%,izalau COS(0u -0, )/d2rp(r*rz)~#( )= (r) + O(a C“/’T/S ﬁf’c/s i)
v

where X/, 1/)0 ch /i T wo lqﬁc /s, are Hermitian operators and p(r = [dzE(x) is the transverse density profile
of the atomic ensemble. The first line describes a pump-induced light shlft while the second line describes coupling
between the atomic DW and cavity light. The last line describes a multimode dispersive shift due to both the ground-
state atomic gas and the DW components. The latter terms are not written out because we ignore the dispersive shift
for simplicity in what follows.

The total Hamiltonian has a set of n conserved quantities corresponding to the total number of atoms in each
ensemble. The observables N; = 1&8’1-1/3072- + ﬁilz/}“ + illlﬁ“ correspond to the number of atoms in the #’th vertex
and are conserved by H, leading to the U(1) symmetry of the overall phase of the atomic field \ill(x) The system
also possesses two independent Z; symmetries. The first symmetry corresponds to the transformation ﬁcﬂ- — —@c,i
for all 7. The other symmetry is identical but for the 1/35,1 operators. We further discuss the role of these symmetries

in Sec. [TEl

The photonic degrees of freedom can now be adiabatically eliminated. This approximation is valid in the limit
2
AL > %, \JZ%UI’ FE,., where the cavity field dynamics are much faster than the atomic motion. Elimination proceeds

by writing the equation of motion for @, based on Egs. (S3), (S9), and (S10) and including cavity dissipation with
photon loss rate 2«. Setting the time derivative to zero yields

. G
= AT ZRM [ ot -z, (s11)

where we define RM = c08(0,)Xc,i + sin(6,)xs,;. This expression for G, is substituted back into the equations of
motion for the atomic fields to find an atom-only Hamiltonian with a light-mediated interaction. Up to an overall
energy shift, the atom-only Hamiltonian is given by

il —<2E+Q2)§n:(¢*z/3 + 9l
atom-only — 4AA — c,ite, S,1 78,1 (S )
12

R R FTAW) , — —
4A2 -3 3 Kt Resat [ Prdrol - r)pl - 5)EwE)

z]lu

The second line is the light-mediated interaction ﬁint, and can be simplified by defining a position-dependent inter-
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action function in 2x2 matrix form:

—
—

E,(r") cos?(6,,) cos(6,,

n o u(r) )8111(0“)
Dlr,r) = Ac g A, +ik [COS(@M) sin(6,,) sin®(6,,) (513)
The interaction term can then be written as
202 noor. 9T -
2 gOQ |:Xc i:l / 2. 72/ ! / |:Xc ]:l
Hpyw = —— N d“rd“r' p(r — r;)p(r’ —r;) Re |D(r,r N S14
S rrvP A ) ple = r)p(' = 1) Re [D(r.x")] | X7 (514

We now evaluate the interaction function D explicitly using the known Green’s function of the harmonic oscillator,

Lexp { (rfr’)2 B (r+r/)2 }
2sinh(p) 2w3 tanh(p/2) 2w coth(p/2) |

G(r,r',p) = Z Eu(r)E,(x))e e =

m

(S15)

We consider the limit of a perfectly degenerate confocal cavity, for which A, = A¢ for all u. Recalling that we
consider an even-parity confocal cavity, for which summations over p include only modes with n, = 0 mod 2, we find

N 1 Gt (r,v',0) + G (r,1',im/2) 0

Dler) = sain/Ag) 0 GHe,1,0) — G (v, i /2) | (816)

where GT(r, 1/, ¢) = 2 [G(r, v/, ¢) + G(r,—1', )] = 3 [G(r,r, ) + G(r,r’, o + im)]. This then results in

n - T local non -
Hiny = — N / ! oca non N ) S17
’ Z {Xw} { 0 Jiget = T ] X (817
7,=1
where we have defined the elements of the connectivity matrix as

Jge =g / d?rd*c'p(r — r;)p(r' — ;)G (r,r’,0), (S18)
Jn =7 / d’rd*c'p(r — v;)p(r' — r;)G T (r, ¥, im/2), (S19)

and 7 = g30%[ Aol /[BA% (AZ + k2.

We first consider the simplest case in which the atomic distribution is point-like before considering finite-size effects
in subsequent sections. The atomic density profiles are then given by p(r — r;) = §(r — r;). In this case, evaluation
of GT(r,’,¢) in the limit ¢ — 0 results in 76[(r — r’) /wo| + 76 [(r + 1) /wo|. We consider distinct vertex locations
r; for which the mirror locations also have no overlap, such that r; # #£r; for ¢ # j. This yields the simplification
Jil;?cal = Jlocals, .. The nonlocal term takes the form JP oc cos (2r; -rj/wg) [36]. Thus, the atom-only Hamiltonian
takes the form

2 n n n

Hatom—only = <2E7’ + 4214) Z (ﬁ’l,ﬂ/}c@ + wi,iws,i) - Jlocal Z ()2?71 =+ Xiz) - Z Jinjon ()A(c,if(c,j - )A(s,if(s,j)~ (820)
i=1 i=1 i,j=1

The first term imposes an energy cost on the formation of an atomic DW. In the absence of other terms, or at zero
pump power, the ground state of the system is thus a BEC with no DW. The second and third terms, which scale
with the pump power, represent the light-mediated interaction. Competition between these and the first term drive a
transition into the superradiant phase, in which the atoms can organize into a complex pattern of DWs to minimize
the energy.

The atom-only Hamiltonian can be recast using Gell-Mann operators to describe the quantum limit of the system.
The atomic ansatz in Eq. approximates each atom as a three-level system, with each atom in either the BEC
state or the state with cosine or sine DW modulation. Each atom can thus be represented by the SU(3) Gell-Mann
matrices {\*}, where k € 1,...,8. Because the atoms within a vertex all couple symmetrically to the rest of the
system, the only operators entering into the Hamiltonian are collective sums of Gell-Mann operators. We denote these

operators as Agk) = Zj\;l 5\2“]-, where ;\fj is the Gell-Mann operator for the j’th atom in vertex i. The collective Gell-
)

Mann operators f\gk satisfy the same commutation relations as the A¥ matrices. The collective Gell-Mann operators
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are related to the atomic field operators = (1&07i,1ﬂc7i,1&87i)7 through the Jordan-Schwinger map /A\Ek) = 1/3;)\’“1[)1
Performing the map on the atom-only Hamiltonian yields, up to an overall energy shift:

A 2\~ (1@ 4 1 local A®) non (i OO

Flasomeonty = <E T 8AA) > (A ) ZJ (A7) + (A2 - ]ZlJ (AVAD — AWAM).
(S21)

Note that the squared operators (Agk))Q do not simplify for any N; > 1. The reason is the same as for the case

of products of SU(2) collective spin operators. These do not simplify except in the spin-1/2 limit where the spin
operators, corresponding to Pauli matrices, form a complete basis.

A. Finite-sized atomic distributions

Two important effects follow from considering the finite size of the atomic distributions. The first is that the
interaction matrix changes into a form that normalizes the divergent J'°°@ term. Second is that one must account
for the possibility that atoms within a vertex adopt a DW whose phase is nonuniform across the vertex. This leads
to a new effective coupling term between wc ; and ws _j operators.

To account for a spatially dependent DW phase within a vertex, the atomic ansatz is generalized to

U, (x) = VEXx—x;) W‘” + 2t ; cos[k,z + 9;(r)] cos(kpx) + 20 5 sin[k,z + 9;(r)] cos(kyx) | , (S22)

where 9;(r) describes the spatial dependence of the DW phase. Derivation of the atom-only Hamiltonian with this
modified atomic ansatz proceeds in an identical fashion. An explicit expression for flint can be obtained under the
condition that the phase deviation functions 9;(r) are sufficiently small across the atomic vertices. Specifically, we
consider a functional form that contains only the first-order correction, a linear gradient of the phase, using ¥;(r) =
g; - (r —r;). In this case, we simplify trigonometric expressions involving ¥;(r) using the small-angle approximations
cos[d;(r)] &~ 1 and sin[9;(r)] =~ g; - (r — r;). We also ignore the contribution of the DW phase gradient to the kinetic
energy as it is much smaller than FE,. The interaction Hamiltonian is then

n ~ T local non o
Ti=— 3 Xc,z} |:Jij + 5 Kij } {Xc,j]
nt — o 1 1 non S (823)
[Xs,z Kij Jig® = T [ Xsug

i.j=1 Y

where the new symmetric matrix K” describes a cross-coupling between . and y, operators. Within this small angle
approximation, the integral expressions for J lfcal and J7°" are unchanged and thus are still given by Eq. and
Eq. -7 respectively. Elements of the K matrix are glven by

Ky=J / dPrd®r p(r —r)p(r’ —1;)GH (0, ¥ im/2) [gi - (r —v;) + g5 - (¢ — ;)] (S24)

This results in an atom-only Hamiltonian given by

n

A 2 n ~ ~ ~ ~
Hatom-only = <2E + ‘&A) Z (wl,ﬂvz’c,i + wi,iws,i) Z JIOCdl (Xc i X z) (525)
i=1

n
= D T Reies — XsiXog) = D Kij (ReiXeg + Rsike) -
i,j=1 1,5=1

The quantum model, including the new K matrix coupling term, is then derived through the same Jordan-Schwinger
mapping. The associated atom-only Hamiltonian is

n

-Hatom—only (E + SZZA) Z (A(3) + 7A(8 ) Z Jlocal { + (AE4))2} (326)

=3 e (AR S AOAY) - 3 iy (AVAY £ AR

i,j=1 i,5=1
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The integral expressions for the coupling matrices can be exactly evaluated for Gaussian atomic densities p(r) =
exp(—r?/20%)/(2m0%). Integration results in the expressions

Jiget = ju;g {exp (m — )2> +exp (Wﬂ ) (827)

8% 40? 40?
Jin = jw—zo exp < O;A J cos( T 5 aE > ) (528)
Wetr wiy wh Wegr
27 o2 202 17 + 1’
K” = — 2 A exXp <—2A D) J (829)
wcﬁ' wcﬁ' Wy

2
wy . [ 2r;-r; 20% 2r; -t
X =5 (I -8 i 8j i )
[wgﬁ (rj g+ gg)sm( wr )+weﬂ( "8i + 1 gj) cos W

where weg = wo+/1 + 40?3 / wé. Thus, due to the finite size of the atomic distribution, the J©°! term is broadened
from a delta function for point-like particles, to a distribution with finite width and amplitude. The J"°" term is less
significantly impacted: The finite size of the atomic distribution primarily sets a long-wavelength Gaussian envelope
over the nonlocal interaction.

In summary, the finite size of the atomic distribution allows gradients to appear in the DW phase of each vertex. A
coarse-grained model is obtained by integrating over the area of the atomic distribution to recover a point-like vertex
model at the cost of introducing a new term to the effective energy. This new term, described by the K-matrix, is
proportional to the area of the atomic density.

B. Intracavity field

To find the intracavity field, we use the expression for a, in the adiabatic approximation. Accounting for the DW
phase gradient, this is

. Y g 2 . . . -
a, = m ; / d*r (cos[f, + Vi(r)]Xe,i + sin[0, + Ui (r)]Xs,i) p(r — 15)Z,.(T). (S30)

Note the appearance of the phase deviation functions ¥;(r) inside the integral, compared to Eq. (| - We can then
insert this expression into Eq. . Relying on the Green’s functions, we have

z gOQ 2./ . / NS . N
d(x) = Aa(Ae Tin) /d r'p(r' —r; [G (r,r 70)((;05[1%2 + ()| Xe,i + sinfkyz + 94 (r )]Xs,z) .

+ G+(r,r’,i7r/2)<cos[k z —9;(r")|Xe,i — sinfk, 2 — 9; (r')]fgs,i)] .

The light emitted from the cavity on one side, say propagating along +z, is the component of the field with spatial

dependence e?*r*. This forward-propagating part is
A gof2 . . . .
(I)F = oA A . (I)oc I3 ¥ ci T EX) (bnon I3 ¥ c,i EXVAR) 532
(r) 8AA(Ac+in)Zi:[l (£513) (Resi — 1Xs6) + Prion (1574) (Resi + iXs.i)] (532)
where we defined
Docal (T ;) = /er’p(r’ - ri)GJr(r,r’,O)ewi(‘“l)7 (S33)
®pon (T 1;) = / &' p(r' = )G (x,xim/2)e ), (S34)

as the local and nonlocal field arising from a source at position r; with density distribution p. We note that the
nonlocal field generated by vertex i, i.e., Ppon(r;r;), allows one to recover elements of the J and K matrices. To
average over the vicinity of r;, we calculate the integral

I; = /dzrp(r —1;)Puon(r;1;) = /d2rd2r'p(r —1)p(r' —1;)GT(r, 1 in/2) [1 —ig; - (r — ri)], (S35)
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where we used the linear approximation of ¢;(r’) as well as a small-angle expansion, swapped integration variables,
and used G(r,r’, ) = G(r',r, p). By comparing to Egs. and , it can thus be seen that J°"/J = Re{l;;}
and Kw/j = 7Im{I¢j + Iﬂ}

Assuming a Gaussian density and again using the linear approximation for ¢;(r') = g; - (r' — r;), we can explicitly
evaluate the local and nonlocal fields as

2 2 2
. Wo (r—r;) . (r+r;) .
Djpeal (r;1;) = pry (exp [_%',24 +ig; - (r— rz)} + exp {—20124 —igi-(r+r)| ), (S36)
2r’o? 1 2 )
Dyon(r;T;) = exp [ - g?ai] cos |:21“ (r; — zgiai)} . (S37)
wy 2 wj
C. Discussion of density-wave gradients
Experimentally, we find that the gradients are related to vertex positions via g; = —2r;/w?;. We now discuss this

behavior in more detail. The relation between gradient g; and vertex position r; can be understood for individual
vertices as a consequence of the nonlocal superradiant emission pattern that it generates: It is energetically favorable
for the DW to adopt a gradient that matches the wavevector of the nonlocal field. A vertex at position r;, generates
a nonlocal field of the form €T + e~ where the wavevector is k = £2r; /w?;. The expression for g; matches one
of these wavevectors.

For superradiance experiments with multiple vertices, nonlocal fields interfere and the optimal phase evolution
across a vertex may differ from this single-vertex optimal gradient. Nonetheless, we experimentally find that the
gradients still closely follow this same prediction. We extract the gradients from the full fit as described in Sec. [[D]
Their magnitude and direction are illustrated in Fig. [S8] where we plot the statistics of the entire dataset, i.e., 12,300
experimental shots with 8 atomic vertices each. Figure shows the strong correlation between gradient magnitude
and distance from cavity center; the red dashed line is the relation |g| = 2|r|/wg. To assess the direction of the
gradients, we show in Fig. the inner product between gradient and position unit vectors, i.e., the cosine of the
angle between the gradient direction and vertex position vector. These are all clustered at —1, indicating that the
gradient points toward the cavity center.

Using the above relation between gradient and position, the K-matrix from Eq. can now be simplified to

270 202 17 +12\ [dw2r;-v; . [2r;-v;\  4do%(x? 412 2 -1;
K= jQUAexp<UQA d woz i sin( r2r3>+ Al 1 J)cos( r rj) . (S38)

2 2
Wetr Wegg W Wesr Wegr Wetr Wer

The form of this is no longer gradient-dependent. This position-dependent form is used in this work and presented in
an approximate form in the main text.

We also performed numerical simulations to verify the formation of phase gradients. Simulated annealing for the
semiclassical energy Eq. is used to probe the ground-state spin configuration. We represent each vertex by an
ensemble of 100 individual spins that are spatially distributed within the vertex with standard deviation o4 = 4 pm.
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FIG. S8. Observed density-wave gradients. (a) Two-dimensional histogram of observed gradient magnitudes and vertex
positions. A strong correlation is observed, closely matching the relation g = —2r/w8 indicated by the red dashed line. (b) 2D
histogram of the gradient directions plotted by taking the cosine of their angle with respect to the position vector. A value of
—1 (41) indicates radially inward (outward) pointing gradients.



18

This method directly probes finite-size effects within a vertex, and so the approximate K-matrix interaction is not
used. We verify that gradients develop within the vertices for systems up to at least 8 vertices. In particular,
when there is only one vertex, the gradient closely matches the wavevector of the nonlocal field as predicted above.
However, for system sizes n > 1 we find that the gradient no longer follows this simple prediction, instead forming
much less predictable gradients. This can be understood by the fact that the phase gradient now depends on the sum
of nonlocal fields from all vertices. Further study is needed to understand the difference between these simulations
and experimental observations. Nevertheless, the heuristic model presented above conforms well to our experimental
observations.

D. Semiclassical limit

We use a semiclassical description to describe the experimental situation of many atoms per vertex. Each vertex can
be described by a 3-component vector (S¥,SY,S7). The spin components are defined in terms of expectation values of
the atomic field operators, S¥ = (Xc.:)/N, S = (Xs.:)/N, and S7 = (&lzqﬁm—&—d}l iﬁ)&i—qﬁg iz/g(m)/N. Normalization of
the atomic wavefunction constrains the semiclassical spin vector to lie within the unit sphére. Taking the expectation
value of Eq. and performing a mean-field decoupling of x operators yields the semiclassical energy

2 n n n
E=N [2ET + &] D> 8F—N2Y g [(sgv)2 - (53)2} — N2 [T (SESE — SYSY) + Ky (SPSY + 5YSY)] .
i=1 i=1 i,j=1

(S39)

Far above the superradiant threshold, the transverse field term oS7? plays little role and the spin vectors lie near
the xy-plane. Approximating the spins as laying fully within the zy-plane allows for a polar coordinate representation
S¥ = s;cos; and SY = s; sin6;, resulting in a simplified energy

)

E=—N?Y_J0®s? = N> > sis [J5" cos(0; + 0;) + Kijsin(6; + 6;)] . (S40)
=1

ij=1

Furthermore, the ratio of local-to-nonlocal interaction prefactors are J'°¢a! / J1°" ~ 10, using the observed o4 ~ 4 pm.
The interaction energy is thus dominated by the local energy, which ensures that the length of each spin vector is
maximized, s; = 1. We can then use an angle-only model

FE = —N2 Z [J;ljon COS(Q,L' + Gj) + Kij sin(Gi + 9])] . (841)

i,7=1

This is equivalent to Eq. (1) of the main text after a rewriting using spin components S* and SY and the dropping
of the superscript on J;°" for simplicity. In the main text we define Jo = N 27 and omit the negligible contribution
from k.

The expression for the semiclassical intracavity field follows from Eq. (S32|), with the above substitutions, and
results in

NgoQ

P SR )

Z S; [<I>1oca1(r; ri)e Y 4 & (r; ri)ew"]. (S42)

i

Hence it is clear that the information about the DW phase 6; for each atomic vertex is encoded in the light-field we
detect using holographic imaging.

We verify that the spin vectors indeed lie close to the zy-plane at the equator through numerical simulations.
Equilibrium distributions of the semiclassical energy in Eq. are simulated via parallel-tempering Monte Carlo.
The simulation uses vertex positions and widths identical to those measured in the experiment to generate Jio¢a!
Ji7", and K;;. Within the semiclassical approximation, we find the superradiant threshold by performing a linear

stability analysis of the normal phase. This becomes classically unstable when % [ZET + %} < max; A;, where \;
are the eigenvalues of the block matrix:

M =

local non
Jleeal g K } (S43)

K Jlocal _ Joon
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We assume a pump power (xQ?) that is a factor 1.25 above the critical coupling strength for the superradiant
transition. The radius of spins in their equilibrium states is recorded at a temperature of 0.03 x max; A;. We find that
the average total spin radius is >0.97 with a standard deviation <3.7% across an ensemble of disorder realizations.
This implies that the spins are close to the boundary of the unit sphere. Additionally, the average radius in the
zy-plane ranges between 0.87 and 0.94 across disorder realizations, with a standard deviation <6.7%. Other than a
global rescaling, we can therefore approximate s; ~ 1 for all ¢, which implies that approximating the semiclassical
energy expression with the angle-only model is valid in this regime.

Finally, we discuss two additional terms that could be added to this energy. Ome could introduce a 780-nm
intracavity field via longitudinal pumping of the cavity. Use of a digital micromirror device or spatial light modulator
enables phase-sensitive local addressing of vertices; the former was demonstrated in [55]. This would result in an
energy term corresponding to that of a local longitudinal field,

Elongitudinal = Z hi COS(@Z' - ¢Z)7 (844)
=1

where h; is the effective field strength and ¢; is the spatial phase of the driven intracavity light. This would enable
the measurement of magnetic susceptibilities. Additionally, a 1560-nm longitudinal probe would result in an optical
potential for the DWs that corresponds to an easy-axis term

Eeasy—axis = Z fi COSQ (01 - 9011)7 (845)

=1

where f; is the easy-axis strength and ¢; its direction.

E. Z, symmetries

The effective energy in Eq. possesses a global Z; symmetry; we now describe its effect on the overlaps. For
brevity, we denote the configuration of all spins together as § = {6;} . The transformation § — 6+ 7 leaves the energy
invariant. As in other superradiance experiments [34], this symmetry is spontaneously broken at the superradiant
phase transition. Experimental evidence for this in the spin network is presented in the next section. To understand
how this transforms the overlap parameter, we can apply this global Ising spin-flip on replica o but not on replica
B. Then, in terms of @, R, the linear combinations of overlaps matrices defined in the main text, the Ising symmetry
results in (Q, R) — (—Q, —R). This implies that the overlap distributions are symmetric under a 180 degree rotation.

Before considering finite-size effects in Sec. we noted two independent Z; symmetries, ¥.; — —.; and

1/38714 — —77[}571' (for all 7). The joint transformation corresponds to the Ising symmetry discussed above. Applying the
transformation of only the sine component results in § — —# for the semiclassical spin configuration. Physically, this
corresponds to the reflection of the DWs in the cavity midplane z = 0. The resulting transformation on the overlap
parameters can again be understood by applying this operation on only one replica. This results in (@, R) — (R, @),
i.e., a reflection of the overlap distribution along the diagonal. This symmetry is missing in the observed spin
overlap distributions, except in rare cases such as Fig. 4c¢ of the main text (see also Sec. . Indeed, the finite-size
Hamiltonian Eq. (S25) [or its semiclassical equivalent Eq. } is not invariant under this transformation. The
symmetry is explicitly broken by the choice of DW gradients g;. In principal, both +g; configurations should lead
to low-energy states. In practice we find only one of these sets, as discussed in Sec. [TC] Potential reasons for this
symmetry-breaking are the residual ~ 10-um displacement of the atoms from the cavity midplane, remnant cavity
mode dispersion, cavity mirror aberrations, or nonlinearities arising from the imaging readout [36]. The 1560-nm light
used to stabilize the cavity length could also introduce a bias via the easy-axis term it induces.

F. Local gauge rotations

We can also consider what happens if we apply the Ising transformation discussed above to only a single spin:
0 — 0 + we;, where e; is the ¢’th unit vector. This is a local transformation of spin ¢ that, by itself, does not leave
the energy invariant. This can become a local gauge transformation that leaves the energy invariant by making a
corresponding change on the J- and K-matrices, specifically by flipping the sign of each element in the i’th row as
well as in the ¢’th column. The signs of the diagonal elements J;; and K;; are thus flipped twice and remain the same.
These local gauge transformations can be applied to transform a staggered ferromagnet into a conventional one and
vice versa, leaving the energy landscape invariant.
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FIG. S9. Experimental evidence for the presence of a Z; Ising symmetry. (a) Plot of the double ramp sequence accompanied by
a typical cavity emission record. The pump power (dashed black line, right axis) is ramped through the superradiant transition
twice, with two readout periods shown by gray regions where the pump is rapidly increased to high power. A typical cavity
emission pattern (blue, left axis) shows two superradiant emissions with the superradiant thresholds demarcated by red dashed
lines. (b) An example intensity profile of a holographic image in which constructive interference between the two superradiant
emissions occurred. (c) An example intensity profile in which destructive interference occurred. Panels (b,c) are shown on the
same color scale. (d) The interference signal is derived by integrating the field intensity within the white dashed circular regions
of panels (b,c). Histogram of the integrated intensities of 103 experimental cycles. A dashed line at 0.33 separates populations
corresponding to constructive and destructive interference.

III. EXPERIMENTAL VERIFICATION OF Z, SYMMETRY

As discussed in Sec. the system contains a Zs Ising symmetry in which the spin state 6 may be transformed
into 6 + w. Unfortunately, it is not possible to distinguish between these two states from a single holographic image,
due to the following reasons. The confocal field in Eq. is invariant under the joint transformation 6 — 6 4+ 7 and
¢ — ¢ + m, where ¢ is phase of the LO beam with respect to the cavity emission. While ¢ is stable over the course
of a single experiment, it is not stable from shot to shot, and thus the two Zs related states cannot be distinguished
using the readout method described in Sec. [[D]

Nevertheless, we are able to perform an independent set of experiments that demonstrate the existence of this
Ising symmetry. As in earlier work [57H59], the long-term phase fluctuations of the LO can be circumvented by
repeatedly ramping in and out of the superradiant phase within a single experimental shot. We accomplish this using
the ramp schedule shown in Fig. [SOh. This is shown together with a typical cavity emission for a configuration of
vertices resulting in a yFM. We change the cavity detuning to Ax/2m = —40 MHz to enhance the signal strength
for these types of experiments. This change is sufficiently small as to not affect the ferromagnetic behavior of this
configuration: Indeed, only two global minima oriented along 6; = £7/2 are commonly found. To demonstrate
this discrete symmetry, two ramps and readout periods follow in close succession, with two superradiant emissions
separated by approximately 2 ms. The ramp rate is kept the same as described in the main text, while the ramp
durations are optimized to balance the integrated intensity of the two superradiant emissions.

We highlight the use of holographic imaging, rather than temporal heterodyne, to observing spontaneous Zs-
symmetry breaking. This differs from earlier experiments [57H59] and works in the following manner. Holographic
fringes from interference between the cavity emission and the LO beam accumulate only during the readout periods,
shown as the gray regions in Fig. [SOp. The camera is exposed during the full ramp sequence, which allows these
two holograms to interfere on the camera. The LO phase is sufficiently stable over this short period to allow an
interference signal to develop. If the Ising symmetry is broken spontaneously at the superradiant phase transition,
then the phases of the two pulses would be completely independent. The yFM states of opposite Zy symmetry would
produce cavity emission patterns 7 out of phase with each other. Thus, the two sequential holograms are equally likely
to constructively or destructively interfere. Indeed, we observe both constructive and destructive interference patterns
as expected from the Ising symmetry. Figures[S9b,c show normalized intensity profiles of the cavity emission for two
independent repetitions of the experiment, where Fig. [S9p (Fig. [S9k) demonstrates fully constructive (destructive)
interference.

The probability for realizing constructive or destructive interference is measured over 103 independent repetitions
of the experiment. To quantify the level of interference in an image, the intensity of the total field at the location of
the vertices is integrated. The regions of integration are demarcated by dashed circles in Figs. [S9p,c. The histogram
of integrated intensity over all experiments is shown in Fig. [S9d. A value of zero corresponds to fully destructive
interference; the integrated intensity is normalized by the largest value measured. Two distinct populations are found,
corresponding to constructive and destructive interference. Separating the two populations at a value of 0.33 results
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FIG. S10. Comparison between measured and calculated interaction matrices. (a,b) Measured J and K matrices, respectively.
(¢,d) J and K matrices, respectively, calculated using Egs. (S28) and (S38) based on vertex position data and measured width
of the vertices. Color scale is the real part of the color scheme in Fig. 1c of the main text.

in 48.5% (51.5%) of experiments realizing constructive (destructive) interference. This is in close agreement with the
50% probability expected from spontaneously breaking the Ising symmetry. Because our hologram measurements are
not sensitive to the way this symmetry is broken in the experiment, all overlap and magnetization distributions shown
in the main text are explicitly symmetrized for clarity.

IV. MEASUREMENT OF THE J AND K-MATRICES

The J and K matrices can be calculated based on the positions r; of the atomic vertices in a perfect confocal
cavity; see Egs. and . We also independently measure these matrices, as discussed in this section, to assess
deviations from the calculated matrices due to cavity imperfections. The measurement procedure is as follows. For a
given position configuration, we isolate a single vertex 4, as described in Sec. [[A] Then we perform a superradiance
experiment using only this single vertex and record the intracavity field using holographic imaging. This reveals
the intracavity field generated by vertex i, which we denote E;(r). Since the interactions are photon-mediated, this
directly provides the interaction coupling strength via the theory presented in Sec. @ A vertex at position r;
experiences total interaction E;(r;); note that we actually take a Gaussian average around r; to account for the finite
vertex width 4. The elements J;; and Kj; correspond to the real and imaginary part of this quantity, respectively.
The recorded cavity field thus provides the entire i’th row of both J and K matrices.

To reduce imaging noise when performing these interaction matrix calibrations, we average together the fields from
approximately 30 repetitions of the same superradiance experiment. Repeating this procedure for each vertex provides
the values of independent rows of the J and K matrices. We rescale these rows because the brightness of the hologram
is not consistent across the vertex positions: Using the fact that the J and K matrices are symmetric, this rescaling
is performed by algorithmically minimizing ||J — JT||/||J||. The same rescaling is used for both J and K matrices,
and the antisymmetric part of the resulting matrices is discarded.

This measurement process is very time consuming, so we perform this measurement for only a few selected position
configurations. Namely, the two ferromagnetic configurations presented in Fig. 2, as well as the disorder instances in



22

Fig. 3 and Figs. 4a—d. We find good overall agreement between the measured J and K matrices and those calculated
from Egs. and . Figure presents a direct comparison for the position configuration of Fig. 3 of the
main text. The measured matrices can be determined up to only a global rescaling. In Fig.[SI0] this scale is chosen to
maximize the similarity between the experimental and calculated J matrix. We reiterate that the calculated matrices
assume perfect confocality, which in practice is hampered by, e.g., astigmatism and mirror surface defects [51].

V. EQUILIBRIUM AND NONEQUILIBRIUM NUMERICAL SIMULATIONS

We use parallel-tempering Monte Carlo simulations [46] to study equilibrium properties of our system. The sim-
ulations follow the even/odd deterministic swapping algorithm [60, [61], typically with 10 geometrically sampled
temperatures ranging from ~ 0.057, to 27,. States are sampled from the angle-only energy model Eq. to yield
equilibrium overlap and magnetization distributions. We typically use 16,000 update steps to evolve a replica at each
temperature, each with a local Gaussian proposal function of standard deviation 7/8. We find that this is sufficient
to achieve convergence of the overlap distribution for the n = 8 system size.

As discussed in the main text, the parallel-tempering simulations fail to accurately match experimental spin overlap
distributions. This is illustrated in Fig. [S11j(a-1), where we simulate two of the experimentally realized disorder
instances using the measured J and K matrix. We show a temperature progression from the paramagnetic phase into
an ordered phase. At no temperature does the overlap look comparable to that experimentally observed in Figs. 3
and 4c of the main text. Likewise, the parallel-tempering simulation shown in Fig. [STIin-r for the Parisi distribution
lacks key features exhibited by the experimentally found distribution in Fig. 4e.
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FIG. S11. Equilibrium overlap distributions from parallel tempering. (a-f) Numerical spin overlaps for the disorder instance
of Fig. 3 (and Fig. 4a) of the main text. (g-1) Numerical spin overlaps for the disorder instance of Fig. 4c of the main text.
(m-r) Numerical Parisi order parameter, disorder averaged over all 123 disorder instances of Fig. 4e of the main text. The
temperatures, normalized to the maximum magnitude eigenvalue of the (measured) J matrix Amax, are: (a,g,m), 1.11; (b,h,n),
0.34; (c,i,0), 0.19; (d,j,p), 0.11; (e,k,q), 0.06; and (f,1,r), 0.03.

While parallel-tempering simulations provide insight into equilibrium properties, our experiment is manifestly
nonequilibrium. Some nonequilibrium effects can be captured through rapid simulated annealing. An initially hot
system is simulated under the Metropolis-Hastings algorithm [62] [63] at a temperature T that is rapidly decreased
far below T,.. The simulation is stopped before the system is allowed the thermalize. Specifically, we ramp to a final
temperature of 0.047, and perform 560 Metropolis steps per random initial state. For Fig. 4f-i, we use 1000 initial
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states to construct the overlap distribution, while Fig. 4j uses 250 initial states for each of the 123 disorder instances.

VI. BOOTSTRAP ERROR ANALYSIS

The statistical error in magnetization and overlap distributions incurred from having a finite number of experi-
mental replicas is estimated using a bootstrap analysis. We focus here on the overlap distributions; analysis of the
magnetization distributions follows identically. Bootstrap samples for a given disorder realization of the J and K
matrices are generated by sampling with replacement from the set of measured spin states. The size of the bootstrap
sample is equal to the number of measured replica spin states; 900 replicas for the ferromagnetic data in Fig. 2 or 100
replicas per J matrix for the data in Figs. 3 and 4. We then compute the 2D overlap distribution p(Jk)(Q, R) of that
bootstrap sample to arrive at a bootstrapped distribution, where k indexes the bootstrap samples. This distribution
is compared to the overlap distribution p;(Q, R) generated directly from the measured set of replicas. Fluctuations in
the distributions pf]k) (Q, R) from one bootstrap sample k to the next are used to determine a bootstrap error estimate
on the measured distribution p;(Q, R). We use 100 bootstrap samples in the results that follow.

A quantitative error estimate is generated using the Hellinger distance between the measured and bootstrapped
overlap distributions. The Hellinger distance is

a9 =1-5"/ps(@ RYP (@, R), (346)
Q.R

and is zero for identical, normalized distributions, and one for completely nonoverlapping distributions. This distance
thus represents a fractional difference between the measured and bootstrapped overlap distributions. Hellinger dis-
tances depend on the number of bins in the distribution. Choosing a larger number of bins requires a greater number
of measured replicas to achieve the same level of convergence to the large-system-size limit. We choose to use 80 bins
per dimension for all overlap and magnetization distributions. This results in an estimated average convergence to
within 5% for the measured overlap distributions in Figs. 3 and 4, with a standard deviation of two percentage points
over all Ny = 123 disorder realizations of the J matrix. The two ferromagnetic systems in Fig. 2, each with 900
replicas, are both estimated to have converged within 4% of their overlap distributions and 2% of their magnetization
distributions.

Bootstrap analysis is also used to estimate the convergence of the aggregate overlap and magnetization distributions.
While the distributions converge in the limit of many disorder realizations, our experimental ensemble contains a finite
number of such realizations. The measured aggregate distribution in Fig. 4e of the main text is constructed to be
the average over disorder realizations, p(@, R) = vaz"l pJ,(Q,R)/Ny. A bootstrap sample can be constructed by
sampling with replacement N; times from the collection of py, (Q, R) distributions. That is, a bootstrap sample is
generated from a random sample By of size N; that contains possibly repeated disorder realization indices. The
bootstrapped aggregate distribution is then constructed as p*)(Q, R) = > ien, D7 (Q, R)/N;. Fluctuations in the

p(k)(Q, R) distributions between bootstrap samples k now indicate the level of convergence in the measured aggregate
distribution. The Hellinger distance between measured p(Q, R) and bootstrapped p*)(Q, R) distributions is again
used to extract a metric of convergence. We find that the aggregate overlap distribution of Fig. 4e is estimated to
have converged to within 2% of the distribution corresponding to an average over all possible disorder realizations.
Similarly, the aggregate magnetization is estimated to be within 3% of the full disorder-averaged distribution.

VII. EFFECTIVE TEMPERATURE FOR FERROMAGNETIC DATA

The effective temperatures for the ferromagnetic systems shown in Fig. 2 of the main text are found via a Maxwell-
Boltzmann fit using the simplified interaction energy in Eq. (S41)). These are normalized using an estimated critical
temperature T,. We first describe the form of the Maxwell-Boltzmann distribution used for the fit before describing
how T, is estimated from equilibrium numerical methods.

A. Derivation of Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distributions for the ferromagnetic systems are amenable to a low-temperature analysis by
local expansion around its two (spin-flip-symmetry-related) basins of attraction in the free-energy landscape. We now
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derive its generic form by considering the density of states near these global minima. Taylor expansion of Eq. (S41))
near the global minimum configuration 6y leads to

E(0 +€) = Egs + eTHe + O(?), (547)

where Eys = E(6p) is the ground state energy, and H is the Hessian matrix evaluated at 6. This expansion is
valid in proximity to the ground state, where |¢] < 1. This condition is satisfied when the temperature T of the
Maxwell-Boltzmann distribution is sufficiently small so that states far from the ground state are not populated.

We now calculate the density of states at a fixed energy level for a general n-vertex spin network system described
by Eq. . Integration over the configuration space at a given energy F yields

(- By
v/det(H)

where we used the fact that the Hessian is a positive definite matrix to perform a change of the integration variable.
The resulting integral calculates the surface area of an n-dimensional unit sphere, which is

g(E) = /(5 (E— Eg —€"He)d"e = O (1 —uTu)d"u, (S48)

27rn/2

/5 (1 —uTu)d"u = Tn/2)" (S49)

The density of states is thus given by

2 ﬂ-TL
(n/2)\ det(H)

g(E) = - (E — Eg)"/?7 1. (S50)

The Maxwell-Boltzmann distribution at temperature 7" is now found by weighting the density of states by the asso-
ciated Boltzmann-factor and normalizing the distribution:

_(BE—-Be)"?*' _(p_puyr

This is the functional form used in the fits of Fig. 2 of the main text to extract the temperature of the ferromagnetic
systems.

B. Estimation of the ferromagnetic T,

The critical temperature of the paramagnet-to-ferromagnet transition is estimated via parallel-tempering Monte
Carlo using the energy in Eq. (S41)). We compute the average absolute m® and mY magnetizations after the local

00 05 10 15 20 25 30 00 05 10 15 20 25 30
T/A T/A

max max

FIG. S12. Estimation of T, for finite-sized zFM and yFM systems. (a) The absolute magnetization for the zFM state as a
function of temperature is found via parallel-tempering simulations. The temperature is normalized to the maximum magnitude
eigenvalue of the measured J matrix, Amax. Two separate linear, least-squares fits are performed in the regions 7/ Amax =
[0.4,0.7] and [1.5, 3], shown as red dashed lines. Their intersection, marked by a star, yields an estimated T. = 0.92 - Ajax. The
gray horizontal line shows the remnant magnetization «c1/4/n found in the paramagnetic phase for our finite-size system. (b)
The same analysis applied to the yFM system also yields the estimate 7. = 0.92 - Apnax in terms of the maximum eigenvalue of
the measured yFM J matrix.
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FIG. S13. Experimental ensemble of interaction matrices. (a) Eigenvalue spectrum and (b) level-spacing statistics for the J-
matrices calculated from the observed position configurations. Red lines show the expected results for a fully random ensemble,
corresponding to n = 8 finite-size versions of the Wigner semicircle and Wigner surmise, respectively.

gauge transformations described in Sec. [[TF] The magnetizations serve as an order parameter as the temperature is
varied. A nonanalytic kink in the magnetization occurs at T, in the thermodynamic limit. For our finite-size system,
there is only a crossover region between two approximately linear regimes. We estimate the crossover temperature 7
by performing linear fits on either side of the crossover region and finding the intersection point of the fit results. This
would occur at T, in the large-n limit. The fit results in Fig. [SI2]show that both the zFM and yFM have an estimated
crossover temperature T, = 0.92Anax, Where Apax is the magnitude of the eigenvalue of the measured J"°" matrix
with largest absolute value. The dependence on the maximum eigenvalue is standard for mean-field models [64],
as this eigenvalue sets the overall energy scale. The appearance of the absolute value reflects the interaction form
S7ST — Sy S;J: For yFM there is an additional minus sign which must be taken into account. We conservatively
estimate 10% uncertainty in this estimate of T,, accounting for the fact that this is a crossover. The error reported
in T'/T, in the main text is a combination of this uncertainty in 7, and the fit uncertainty of 7. Mapping out the full
phase diagram of this vector spin model in the thermodynamic limit, including its spin glass phase and potentially
mixed phases, will be the subject of future work.

VIII. EXPERIMENTAL ENSEMBLE OF J-MATRICES

We now discuss the ensemble of J-matrices used for the disorder average in Fig. 4e. First, we ensure no two
J-matrices are identical. Since the J (and K') matrices are functions of vertex position, we directly compare position
configurations between disorder instances. As long as at least one vertex location is different between configurations,
the resulting J matrices will be distinct. For each pair of configurations we thus find the most displaced vertex and
note its displacement. Across all configuration pairs, these displacements are larger than 4.5 yum> o 4. This shows
that none of the disorder realizations are identical.

To assess the randomness of the ensemble, we calculate the eigenvalue spectrum and level-spacing distribution for
the ensemble of interaction matrices. These are shown in Fig. together with an 8-by-8 symmetric Gaussian
orthogonal ensemble for comparison. The experimental ensemble is close to fully random, with the most notable
feature being an over-representation of eigenvalues near zero. This is a feature of the confocal cavity interaction, see
Ref. [13] for an in-depth study.

IX. QUANTITATIVE ANALYSIS OF ULTRAMETRICITY

To provide evidence for emergent ultrametricity, we analyze the configuration-space structure of the experimental
ensemble of states. For ultrametric spaces, the strong triangle inequality holds: Dog < max{Dq~,Dg ~} for all o, 5, 7.
This can be quantitatively assessed by calculating the K-correlator [45], which is defined for any triplet of replicas
as K = (Dmax — Dmed) /0 (D), where Dpax(meq) is the maximum (median) of the three distances between replicas,
and o(D) is the standard deviation of the distribution of all distances. For an ultrametric space, the probability
distribution of this correlator is p(C) = 6(K). Finite-system sizes introduce some probability for finding small but
nonzero values of K, and ultrametricity in such systems has been studied by performing system-size scaling [45], 65].
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FIG. S14. Quantitative analysis of ultrametric structure. (a) Probability distribution for the K-correlator for the ensembles
in Fig. 3 of the main text. A paramagnetic (non-ultrametric) ensemble is shown for comparison. (b) Average probability
distribution for the K-correlator across all disorder instances. The shaded area indicates the interquartile range around the
median (solid line).

Figure [ST4h presents the probability distributions for the experimental ensembles in Fig. 3 of the main text. All
triplets of replicas are included in the distribution. As a reference for finite-system-size effects, we show p(K) for a
paramagnet, i.e., a phase where each state is completely random, sampling 100 states. For the fastest ramp (blue)
the system is at high temperature and the distribution is qualitatively comparable to that of the paramagnet. For
intermediate ramp rates (red and green) we observe a drastic departure from paramagnetic behavior: The distribution
is much stronger peaked at zero, and values of IC greater than 0.5 are significantly suppressed. The slowest, and hence
coldest, ensemble (orange) is a single thermodynamic state. Because it does not sample much of the configuration
space, its p(K) looks like a paramagnet’s. As a single figure-of-merit, we quote the mean (KC): This is 0.57 for the
paramagnet, and (i) 0.56, (j) 0.39, (k) 0.16, and (1) 0.63 for the experimental ensembles in those panels of Fig. 3.

We perform a similar analysis of all 123 disorder instances included in this work. To show the aggregate behavior,
Fig. plots the median (solid blue line) and the interquartile range (shaded area) across all probability distri-
butions. Again the paramagnet is shown for comparison (black line), highlighting the departure of our experimental
ensembles from that state with no ultrametric structure. The mean of K is (K) = 0.22, with a standard deviation of
0.14 over the different disorder instances (cf. the paramagnetic value of (K) = 0.57).

X. COMPREHENSIVE SET OF SPIN OVERLAPS

Figure 4e of the main text presents the experimental Parisi order parameter distribution from 123 disorder instances.
The spin-overlap distribution for each of these instances is shown in Fig. Of these, panels 1 through 4 are presented
in the main text as Figs. 4a-d, respectively. Note that we ignore overlap components ¢,,% and g/ throughout because
we believe they play no role as order parameters.
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FIG. S15. All experimentally measured spin-overlap distributions.
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