Stanford University Departments of Physics & Applied Physics and the Ginzton Laboratory and QFARM Initiative
Research
LevLab explores uncharted regimes of quantum matter by pushing the experimental state-of-the-art in ultracold atomic physics, quantum optics, and condensed matter physics. At a billionth of a degree above absolute zero, laser-cooled and trapped gases of neutral atoms are among the coldest objects in the universe. We employ these quantum gases as versatile testbeds for exploring the organizing principles of novel quantum matter.
The aims are our three projects are to:
- Better our understanding of quantum nonequilibrium physics by creating 1D quantum gases of dysprosium, the most magnetic element, see Dysprosium Quantum Gases;
- Create quantum spin glasses using atoms and photons and use them to build quantum neural networks for developing novel quantum-advantaged computational devices, see Many-Body Cavity QED;
- Use our newly invented SQCRAMscope scanning probe microscope to directly image electron transport in quantum materials using the quantum gas as an exceptionally sensitive magnetic field detector, see The SQCRAMscope.
News & Events
We observe a novel quantum many-body phenominon in quench compressed scar states. Published in
Our paper has appeared in Nature regarding the creation of the first optical
LevLab has created a quantum Archimedes' screw. See paper published in
"Ultracold atoms put high-temperature superconductors under the microscope" appears in