SQCRAMscope microscopy

SQCRAMscope microscopy

Can quantum gases be used as direct probes of condensed matter systems? If, so what sensing advantage might they provide? Our group has recently developed the SQCRAMscope (Scanning Quantum Cryogenic Atom Microscope), a novel quantum sensor that uses an ultracold quantum gas as a micron-resolution magnetometer. It is capable of imaging DC electron transport and magnetization in both room-temperature and cryogenically cooled quantum materials with unprecedented sensitivity. Our novel microscope opens a new frontier in quantum metrology and is the first example of the direct marriage of ultracold AMO physics with condensed matter physics for the exploration of technologically relevant strongly correlated and topologically nontrivial materials. For example, we have already used the SQCRAMscope to locally imagine the electron nematic domains that arise in an iron-pnictide high-Tc superconductor. 

News

Dr. Steve Edkins won Institute of Physics prize for best PhD thesis in the field of superconductivity for 2016. Congratulations, Steve!


APS/Alan Stonebraker

Physics Viewpoint on SQCRAMscope


SQCRAMscope

Check-out recent news!

 


SQCRAMscope

Introducing the SQCRAMscope.  ArXiv paper describes new microscope functionality.


Matt Naides just defended his Ph.D. thesis! Way to go Dr. Naides!


Reconfigurable cryogenic atom chip

Paper on the reconfigurable atom chip trapping of atoms near cryogenic materials published in Appl. Phys. Lett.  We demonstrate a novel atom chip... Read More

Lev publishes proposal for atom chip microscopy of transport in topological insulators ... Read More

Publications

F. Yang, A. J. Kollár, S. F. Taylor, R. W. Turner, and B. L. Lev
A Scanning Quantum Cryogenic Atom Microscope
Physical Review Applied 7, 034026 (2017).  pdf
Selected for a Viewpoint in APS Physics:
J. Fortágh and A. Günther, Sensing Magnetic Fields with a Giant Quantum Wave, pdf

M. A. Naides, R. W. Turner, R. A. Lai, J. M. DiSciacca, and B. L. Lev
Trapping ultracold gases near cryogenic materials with rapid reconfigurability
Applied Physics Letters 103, 251112 (2013)pdf

B. Dellabetta, T. L. Hughes, M. J. Gilbert, and B. L. Lev
Imaging topologically protected transport with quantum degenerate gases
Physical Review B 85, 205442 (2012). pdf

Homepage Project Description: 

Our novel Scanning Quantum CRyogenic Atom Microscope places Bose-Einstein condensates over surfaces to image electron transport in strongly correlated or topologically nontrivial condensed matter materials.

Learn More